
Geometry-Complete Perceptron Networks for
3D Molecular Graphs

Alex Morehead, Jianlin Cheng
University of Missouri-Columbia

acmwhb@umsystem.edu, chengji@umsystem.edu

Abstract

The field of geometric deep learning has had a profound im-
pact on the development of innovative and powerful graph
neural network architectures. Disciplines such as computer
vision and computational biology have benefited significantly
from such methodological advances, which has led to break-
throughs in scientific domains such as protein structure pre-
diction and design. In this work, we introduce GCPNET,
a new geometry-complete, SE(3)-equivariant graph neural
network designed for 3D graph representation learning. We
demonstrate the state-of-the-art utility and expressiveness of
our method on six independent datasets designed for three
distinct geometric tasks: protein-ligand binding affinity pre-
diction, protein structure ranking, and Newtonian many-body
systems modeling. Our results suggest that GCPNET is a
powerful, general method for capturing complex geomet-
ric and physical interactions within 3D graphs for down-
stream prediction tasks. Our code and data are available at
https://github.com/BioinfoMachineLearning/GCPNet.

1 Introduction
Begin a ubiquitous form of information, graph-structured
data arises from numerous sources such as the fields of
physics and chemistry. Moreover, the relational nature of
graph-structured data allows one to identify and characterize
topological associations between entities in large real-world
networks (e.g., social networks). In particular, 3D data of-
ten emerges in domains such as computer vision and can be
readily described as graph-structured inputs. To process and
analyze such 3D information in a meaningful and powerful
way, one must carefully consider the symmetries present in
such data to reduce the geometric redundancies they might
present to a machine learning model.

1.1 Related Work
Previous works in geometric deep learning (Bronstein et al.
2021) have explored the use of neural networks for model-
ing physical systems (Cao et al. 2020). Some of the earliest
neural networks applied to physical systems include con-
volutional networks (CNNs) (LeCun, Bengio et al. 1995),
graph neural networks (GNNs) (Kipf and Welling 2016),

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and point cloud neural networks (Qi et al. 2017). Through-
out their development, such geometric deep learning meth-
ods have expanded to incorporate within their individual lay-
ers equivariance to various geometric symmetry groups to
enhance their generalization capabilities and adversarial ro-
bustness. Methods such as group-equivariant CNNs (Cohen
and Welling 2016), Tensor Field Networks (Thomas et al.
2018), SE(3)-Transformers (Fuchs et al. 2020), and equiv-
ariant GNNs (Fuchs et al. 2020; Jing et al. 2020, 2021; Du
et al. 2022; Aykent and Xia 2022) have paved the way for
the development of future deep learning models that respect
physical symmetries present in 3D data (e.g., equivariance
with respect to rotation symmetries occurring in input data).

1.2 Contributions
In this work, we make connections between geometric graph
neural networks, equivariance, and geometry information
completeness guarantees that provide one with a rich foun-
dation on which to build new graph neural network archi-
tectures. In particular, we introduce a new graph neural net-
work model that is equivariant to the group of 3D rotations
and translations (i.e., the SE(3) group) and guarantees direc-
tional information completeness following graph message-
passing on 3D point clouds. We showcase its expressiveness
and flexibility for modeling physical systems through sev-
eral benchmark studies. In detail, we provide the following
contributions.

• We present the first geometric graph neural network
architecture with directional information completeness
guarantees that in an SE(3)-equivariant manner can pre-
dict new node positions as well as scalar and vector-
valued features for nodes and edges.

• We establish new state-of-the-art results for three sep-
arate molecular-geometric representation learning tasks
where model predictions vary from analyzing individual
nodes to summarizing entire graph inputs.

• Our experiments demonstrate that the geometric infor-
mation that rich geometric message-passing procedures
and local equivariant frame encodings of node positions
provide is useful for predicting both vector-valued node
features as well as scalar node and graph-level properties
across different geometric datasets.

2 Proposed Architecture
2.1 Overview of Our Approach
We represent a 3D molecular structure as a 3D k-nearest
neighbors (k-NN) graph G = (V, E) with X ∈ RN×3 as the
respective Cartesian coordinates for each node, where N =
|V| and E = |E|. We then design E(3)-invariant (i.e., 3D ro-
tation, reflection, and translation-equivariant) node features
H ∈ RN×h and edge features E ∈ RE×e as well as O(3)-
equivariant (3D rotation and reflection-equivariant) node
features χ ∈ RN×(m×3) and edge features ξ ∈ RE×(x×3),
respectively.

Upon constructing such features, we apply several lay-
ers of graph message-passing using functions Φ that update
node and edge features using invariant and equivariant repre-
sentations for the corresponding feature types. Importantly,
our method for doing so guarantees, by design, SE(3) equiv-
ariance with respect to its vector-valued input coordinates
and features (i.e., xi ∈ X, χi ∈ χ, and ξij ∈ ξ) and
SE(3)-invariance regarding its scalar features (i.e., hi ∈ H
and eij ∈ E) to achieve geometric self-consistency of the
3D structure of the input molecular graph G during graph
message-passing. We formalize the equivariance, geomet-
ric self-consistency, and geometric completeness constraints
using the following three definitions.

Definition 1 (SE(3) Equivariance).
Given (H′,E′,X′,χ′, ξ′) = Φ(H,E,X,χ, ξ)

we have (H′,E′,QX′T + g,Qχ′T ,Qξ′
T

) =

Φ(H,E,QXT + g,QχT,QξT),

∀Q ∈ SO(3),∀g ∈ R3×1.

(1)

Definition 2 (Geometric Self-Consistency).
Given a pair of molecular graphs G1and G2,
with X1 = {x1

i }i=1,...,N and X2 = {x2
i }i=1,...,N ,

respectively, a geometric representation
Φ(H,E) = Φ(G) is considered geometrically complete

if Φ(G1) = Φ(G2)⇐⇒ ∃Q ∈ SO(3),∃g ∈ R3×1,

for i = 1, ..., n,X1T

i = QX2T

i + g.
(2)

Definition 3 (Geometric Completeness).

Given a positional pair of nodes (xt
i, x

t
j) in a 3D graph G,

with vectors atij ∈ R1×3, btij ∈ R1×3, and ctij ∈ R1×3

derived from (xt
i, x

t
j), a local geometric representation

F t
ij = (atij , b

t
ij , c

t
ij) ∈ R3×3 is considered geometrically

complete if F t
ij is non-degenerate, thereby forming a

local orthonormal basis located at the tangent space of xt
i.

(3)

2.2 SE(3)-equivariant complete representations
Representation learning on 3D molecular structures is a
challenging task for a variety of reasons: (1) an expres-
sive representation learning model should be able to predict

arbitrary vector-valued quantities for each atom and atom
pair in the molecular structure (e.g., using χ′ and ξ′ to pre-
dict side-chain atom positions and atom-atom displacements
for each residue in a 3D protein graph); (2) arbitrary rota-
tions or translations to a 3D molecular structure should af-
fect only the vector-valued representations a model assigns
to a molecular graph’s nodes or edges, whereas such 3D
transformations of the molecular structure should not affect
the model’s scalar representations for nodes and edges (Du
et al. 2022); (3) the geometrically invariant properties of a
molecule’s 3D structure should be uniquely identifiable by a
model; and (4) in a geometry-complete manner, scalar and
vector-valued representations should mutually exchange in-
formation between nodes and edges during a model’s for-
ward pass for a 3D input graph, as these information types
can be correlatively related (e.g., a scalar feature such as
the L2 norm of a vector v can be associated with the vec-
tor of origin v) (Aykent and Xia 2022; Morehead, Chen, and
Cheng 2022).

In line with this reasoning, we need to ensure that the
coordinates our model predicts for the node positions in a
molecular graph G transform according to SE(3) transfor-
mations of the input positions, in contrast to our current ap-
proaches that remain E(3)-equivariant or E(3)-invariant to
3D positional transformations of G and consequently intro-
duce insufficient geometric priors into the model’s learning
procedure (e.g., due to the chirality of 3D protein structures).
Simultaneously, without introducing any direction degen-
eration between pairs of node positions, the model should
SE(3)-invariantly and SE(3)-equivariantly update the scalar
and vector-valued features of G, respectively. To increase its
generalization capabilities, our model should also maintain
SE(3)-invariance of its scalar features produced when the
input graph is transformed in 3D space. Following (Wang
et al. 2022), this helps prevent the model from losing im-
portant geometric information (i.e., attaining geometric self-
consistency) during graph message-passing. One way to do
this is to introduce a new type of message-passing neural
network.

2.3 GCPNET Architecture
Towards this end, we introduce our architecture for Φ sat-
isfying Eqs. (1), (2), and (3) which we refer to as the
Geometry-Complete SE(3)-Equivariant Perceptron Network
(GCPNET). Subsequently, our definition for GCPNET is
presented in Algorithm 1. We display the design and opera-
tions wherein of our proposed GCP module in Figure 1.

It is then straightforward to prove the following three
propositions (see Appendices A.1 through A.6 for a more
detailed description of the GCPNET architecture and its
equivariant properties).

• Proposition 1. GCPNETS are SE(3)-equivariant
−→ Eq. (1).

• Proposition 2. GCPNETS are geometry self-consistent
−→ Eq. (2).

• Proposition 3. GCPNETS are geometry-complete
−→ Eq. (3).

Figure 1: An overview of our proposed Geometry-Complete Perceptron (GCP) module.

3 Experiments
In this work, we consider three distinct modeling tasks, com-
prised of six datasets in total.

LBA, Graph Regression. Protein-ligand binding affinity
prediction (LBA) challenges methods to estimate the bind-
ing affinity of a protein-ligand complex as a single scalar
value (Townshend et al. 2020). Accurately estimating such
values in a matter of seconds using a machine learning
model can provide invaluable and timely information in the
typical drug discovery pipeline (Rezaei et al. 2020). The cor-
responding dataset for this SE(3)-invariant task is derived
from the ATOM3D dataset (Townshend et al. 2020) and is
comprised of 4,463 nonredundant protein-ligand complexes.
Results are reported in terms of the root mean squared error
(RMSE), Pearson’s correlation (p), and Spearman’s correla-
tion (Sp) between a method’s predictions on the test dataset
and the corresponding ground-truth binding affinity values.

PSR, Graph Regression. Protein structure ranking (PSR)
requires methods to predict the overall quality of a 3D pro-
tein structure when comparing it to a reference (i.e., native)
protein structure (Townshend et al. 2020). The quality of a
protein structure is reported as a single scalar value repre-
senting a method’s predicted global distance test (GDT TS)
score (Zemla 2003) between the provided decoy structure
and the native structure. Such information is crucial in drug
discovery efforts when one is tasked with designing a drug
(e.g., ligand) that should bind to a particular protein tar-
get, notably when such targets have not yet had their 3D
structures experimentally determined and have rather had
them predicted computationally using methods such as Al-
phaFold 2 (Jumper et al. 2021). The respective dataset for
this SE(3)-invariant task is also derived from the ATOM3D
dataset (Townshend et al. 2020) and is comprised of 40,950

decoy structures corresponding to 649 total targets. Results
are reported in terms of the Pearson’s correlation (p), Spear-
man’s correlation (Sp), and Kendall’s tau correlation (K)
between a method’s predictions on the test dataset and the
corresponding ground-truth GDT TS values, where local re-
sults are averaged across predictions for individual targets
and global results are averaged directly across all targets.

NMS, Node Regression. Newtonian many-body systems
modeling (NMS) asks methods to forecast the future po-
sitions of particles in many-body systems of various sizes
(Du et al. 2022), bridging the gap between the domains
of machine learning and physics. In our experimental re-
sults for the NMS task, the four systems (i.e., datasets) on
which we evaluate each method are comprised of increas-
ingly more nodes and are influenced by force fields of in-
creasingly complex directional origins for which to model,
namely electrostatic force fields for 5-body (ES(5)) and 20-
body (ES(20)) systems as well as for 20-body systems under
the influence of an additional gravity field (G+ES(20)) and
Lorentz-like force field (L+ES(20)), respectively. The four
datasets for this SE(3)-equivariant task were generated using
the descriptions and source code of (Du et al. 2022), where
each dataset is comprised of 7,000 total trajectories. Results
are reported in terms of the mean squared error between a
method’s node position predictions on the test dataset and
the ground-truth node positions after 1,000 timesteps.

4 Analysis and Discussion
The results shown in Table 1 reveal that GCPNET achieves
the best performance for predicting protein-ligand bind-
ing affinity with a notable margin. The results in Table 2
demonstrate that GCPNET also performs best against all
other models for the task of estimating a 3D protein struc-

Algorithm 1: GCPNET

Input: (hi ∈ H, χi ∈ χ), (eij ∈ E, ξij ∈ ξ), xi ∈
X, graph G

1 Initialize X0 = XC ← Centralize(X)
2 Fij = Localize(xi ∈ X0, xj ∈ X0)
3 Project (h0

i , χ
0
i), (e

0
ij , ξ

0
ij)←

GCPEmbed((hi, χi), (eij , ξij),Fij)
4 for l← 1 to L by 1 do
5 (ml−1

eij ,m
l−1
ξij

) =

Concat((hl−1
i , χl−1

i), (hl−1
j , χl−1

j), (e0ij , ξ
0
ij))

6 (ml
eij ,m

l
ξij

) = ResGCPl
m((ml−1

eij ,m
l−1
ξij

),Fij)

7 (ml
hi
,ml

χi
) = 1

k′

∑
j∈N (i)(m

l
eij ,m

l
ξij

)

8 (hl
i, χ

l
i) = LayerNorm((hl−1

i , χl−1
i) +

Dropout((ml
hi
,ml

χi
)))

9 (hl
i, χ

l
i) = LayerNorm((hl

i, χ
l
i) +

Dropout(GCPl
ffn((h

l
i, χ

l
i))))

10 if Updating Node Positions then
11 (hl

vi , χ
l
vi) = GCPl

v((h
l
i, χ

l
i),F l

ij)

12 xl
i = xl−1

i + χl
vi

13 if Updating Node Positions then
14 Fij = Localize(xi ∈ Xl, xj ∈ Xl)

15 Finalize (XL)← Decentralize(Xl)
16 else
17 xL

i = x0
i

18 Project (hL
i , χ

L
i), (e

L
ij , ξ

L
ij)←

GCPProject((hl
i, χ

l
i), (e

0
ij , ξ

0
ij),Fij)

Output: (hL
i , χ

L
i), (e

L
ij , ξ

L
ij), x

L
i

ture’s quality. Lastly, the results shown in Table 3 indicate
that GCPNET achieves the best results for two of the four
NMS datasets considered in this work, where these two
datasets are respectively the first and third most difficult
NMS datasets for methods to model, yielding the lowest av-
erage mean squared error across all four datasets. Impor-
tantly, GCPNET notably improves upon or maintains the
performance of all previous methods for both node-level
(e.g., NMS) and graph-level (e.g., LBA) prediction tasks,
verifying our method’s ability to encode useful information
for both scales of granularity.

5 Conclusion
In this work, we introduced GCPNET, a state-of-the-art
graph neural network for 3D graph representation learn-
ing. We have demonstrated its effectiveness through several
benchmark studies that suggest that GCPNET is a power-
ful, general-purpose geometric deep learning method for 3D
data. Future work could involve research into developing
variations of GCPNET with improved runtime efficiencies
or could include additional applications of GCPNET for var-
ious other scientific tasks and deep learning datasets.

Table 1: Comparison of GCPNET with baseline methods for
the LBA task. The results are averaged over three indepen-
dent runs.

Type Method RMSE ↓ p ↑ Sp ↑

ENN Cormorant (2019) 1.568 ± 0.012 0.389 0.408

CNN 3DCNN (2020) 1.416 ± 0.021 0.550 0.553
DeepAffinity (2019) 1.893 ± 0.650 0.415 0.426

Graph GCN (2020) 1.570 ± 0.025 0.545 0.533
DGAT (2021) 1.719 ± 0.047 0.464 0.472
DGIN (2021) 1.765 ± 0.076 0.426 0.432

DGAT-GCN (2021) 1.550 ± 0.017 0.498 0.496
GVP (2021) 1.594 ± 0.073 0.434 0.432
GBP (2022) 1.405 ± 0.009 0.561 0.557

Ours GCPNET 1.352 ± 0.003 0.608 0.607

Table 2: Comparison of GCPNET with baseline methods
for the PSR task. Local metrics are averaged across target-
aggregated metrics.

Local Global

Method p ↑ Sp ↑ K ↑ p ↑ Sp ↑ K ↑

3DCNN (2020) 0.491 0.431 0.272 0.643 0.769 0.481
ProQ3D (2017) 0.444 0.432 0.304 0.796 0.772 0.594
VoroMQA (2017) 0.412 0.419 0.291 0.688 0.651 0.505
RWplus (2010) 0.192 0.167 0.137 0.033 0.056 0.011
SBROD (2019) 0.431 0.413 0.291 0.551 0.569 0.393
Ornate (2019) 0.393 0.371 0.256 0.625 0.669 0.481
DimeNet (2020) 0.302 0.351 0.285 0.614 0.625 0.431
GraphQA (2021) 0.357 0.379 0.251 0.821 0.820 0.618
GVP (2021) 0.581 0.462 0.331 0.805 0.811 0.616
GBP (2022) 0.612 0.517 0.372 0.856 0.853 0.656

GCPNET 0.616 0.534 0.385 0.871 0.869 0.676

Table 3: Comparison of GCPNET with baseline methods for
the NMS task. The final column reports each method’s aver-
age mean squared error across all four test datasets.

Method ES(5) ES(20) G+ES(20) L+ES(20) Average

GNN (2022) 0.0131 0.0720 0.0721 0.0908 0.0620
TFN (2022) 0.0236 0.0794 0.0845 0.1243 0.0780
SE(3)-Transformer (2022) 0.0329 0.1349 0.1000 0.1438 0.1029
Radial Field (2022) 0.0207 0.0377 0.0399 0.0779 0.0441
EGNN (2022) 0.0079 0.0128 0.0118 0.0368 0.0173
ClofNet (2022) 0.0065 0.0073 0.0072 0.0251 0.0115

GCPNET 0.0070 0.0071 0.0073 0.0173 0.0097

6 Acknowledgments
This work is supported by two NSF grants (DBI1759934
and IIS1763246), two NIH grants (R01GM093123 and
R01GM146340), three DOE grants (DE-AR0001213, DE-
SC0020400, and DE-SC0021303), and allocations on the
Summit cluster provided by Oak Ridge National Laboratory.

References
Anderson, B.; Hy, T. S.; and Kondor, R. 2019. Cormorant:
Covariant molecular neural networks. Advances in neural
information processing systems, 32.
Aykent, S.; and Xia, T. 2022. GBPNet: Universal Geometric
Representation Learning on Protein Structures. In Proceed-
ings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’22, 4–14. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450393850.
Baldassarre, F.; Menéndez Hurtado, D.; Elofsson, A.; and
Azizpour, H. 2021. GraphQA: protein model quality assess-
ment using graph convolutional networks. Bioinformatics,
37(3): 360–366.
Bronstein, M. M.; Bruna, J.; Cohen, T.; and Veličković,
P. 2021. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. arXiv preprint arXiv:2104.13478.
Cao, W.; Yan, Z.; He, Z.; and He, Z. 2020. A comprehensive
survey on geometric deep learning. IEEE Access, 8: 35929–
35949.
Cohen, T.; and Welling, M. 2016. Group equivariant convo-
lutional networks. In International conference on machine
learning, 2990–2999. PMLR.
Du, W.; Zhang, H.; Du, Y.; Meng, Q.; Chen, W.; Zheng,
N.; Shao, B.; and Liu, T.-Y. 2022. SE(3) Equivariant Graph
Neural Networks with Complete Local Frames. In Chaud-
huri, K.; Jegelka, S.; Song, L.; Szepesvari, C.; Niu, G.; and
Sabato, S., eds., Proceedings of the 39th International Con-
ference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, 5583–5608. PMLR.
Falcon, e. a., WA. 2019. PyTorch Lightning.
https://github.com/PyTorchLightning/pytorch-lightning,
3.
Fey, M.; and Lenssen, J. E. 2019. Fast Graph Representation
Learning with PyTorch Geometric. ArXiv, abs/1903.02428.
Fuchs, F.; Worrall, D.; Fischer, V.; and Welling, M. 2020.
SE(3)-transformers: 3d roto-translation equivariant attention
networks. Advances in Neural Information Processing Sys-
tems, 33: 1970–1981.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Jing, B.; Eismann, S.; Soni, P. N.; and Dror, R. O. 2021.
Equivariant graph neural networks for 3d macromolecular
structure. arXiv preprint arXiv:2106.03843.
Jing, B.; Eismann, S.; Suriana, P.; Townshend, R. J.; and
Dror, R. 2020. Learning from protein structure with geomet-
ric vector perceptrons. arXiv preprint arXiv:2009.01411.
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žı́dek,
A.; Potapenko, A.; et al. 2021. Highly accurate protein struc-
ture prediction with AlphaFold. Nature, 596(7873): 583–
589.

Karasikov, M.; Pagès, G.; and Grudinin, S. 2019. Smooth
orientation-dependent scoring function for coarse-grained
protein quality assessment. Bioinformatics, 35(16): 2801–
2808.
Karimi, M.; Wu, D.; Wang, Z.; and Shen, Y. 2019. Deep-
Affinity: interpretable deep learning of compound–protein
affinity through unified recurrent and convolutional neural
networks. Bioinformatics, 35(18): 3329–3338.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Klicpera, J.; Groß, J.; and Günnemann, S. 2020. Direc-
tional message passing for molecular graphs. arXiv preprint
arXiv:2003.03123.
LeCun, Y.; Bengio, Y.; et al. 1995. Convolutional networks
for images, speech, and time series. The handbook of brain
theory and neural networks, 3361(10): 1995.
Morehead, A.; Chen, C.; and Cheng, J. 2022. Geometric
Transformers for Protein Interface Contact Prediction. In
International Conference on Learning Representations.
Nguyen, T.; Le, H.; Quinn, T. P.; Nguyen, T.; Le, T. D.;
and Venkatesh, S. 2021. GraphDTA: Predicting drug–target
binding affinity with graph neural networks. Bioinformatics,
37(8): 1140–1147.
Olechnovič, K.; and Venclovas, Č. 2017. VoroMQA: As-
sessment of protein structure quality using interatomic con-
tact areas. Proteins: Structure, Function, and Bioinformat-
ics, 85(6): 1131–1145.
Pagès, G.; Charmettant, B.; and Grudinin, S. 2019. Protein
model quality assessment using 3D oriented convolutional
neural networks. Bioinformatics, 35(18): 3313–3319.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga,
L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison,
M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai,
J.; and Chintala, S. 2019. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Wallach, H.;
Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.; Fox, E.;
and Garnett, R., eds., Advances in Neural Information Pro-
cessing Systems 32, 8024–8035. Curran Associates, Inc.
Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J. 2017. Pointnet:
Deep learning on point sets for 3d classification and segmen-
tation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 652–660.
Rezaei, M. A.; Li, Y.; Wu, D.; Li, X.; and Li, C. 2020. Deep
learning in drug design: protein-ligand binding affinity pre-
diction. IEEE/ACM Transactions on Computational Biology
and Bioinformatics.
Thomas, N.; Smidt, T. E.; Kearnes, S. M.; Yang, L.; Li, L.;
Kohlhoff, K.; and Riley, P. F. 2018. Tensor Field Networks:
Rotation- and Translation-Equivariant Neural Networks for
3D Point Clouds. ArXiv, abs/1802.08219.
Townshend, R. J.; Vögele, M.; Suriana, P.; Derry, A.; Pow-
ers, A.; Laloudakis, Y.; Balachandar, S.; Jing, B.; Anderson,
B.; Eismann, S.; et al. 2020. Atom3d: Tasks on molecules in
three dimensions. arXiv preprint arXiv:2012.04035.

Uziela, K.; Menéndez Hurtado, D.; Shu, N.; Wallner, B.; and
Elofsson, A. 2017. ProQ3D: improved model quality assess-
ments using deep learning. Bioinformatics, 33(10): 1578–
1580.
Van Rossum, G.; and Drake, F. L. 2009. Python 3 Ref-
erence Manual. Scotts Valley, CA: CreateSpace. ISBN
1441412697.
Wang, L.; Liu, H.; Liu, Y.; Kurtin, J.; and Ji, S. 2022. Learn-
ing Protein Representations via Complete 3D Graph Net-
works. ArXiv, abs/2207.12600.
Zemla, A. 2003. LGA: a method for finding 3D similarities
in protein structures. Nucleic acids research, 31(13): 3370–
3374.
Zhang, J.; and Zhang, Y. 2010. A novel side-chain orien-
tation dependent potential derived from random-walk refer-
ence state for protein fold selection and structure prediction.
PloS one, 5(10): e15386.

A Appendix
A.1 GCP Module.
As illustrated in Figure 1, GCPNET represents the features
for nodes and edges within an input graph as a tuple (s, V)
to distinguish scalar features (s) from vector-valued features
(V). We then define GCPFij ,λ(·) to represent the GCP en-
coding process, where λ represents a downscaling hyper-
parameter (e.g., 3) and Fij ∈ R3×3 denotes the SO(3)-
equivariant frames constructed using the Localize operation
(i.e., the EquiFrame operation of (Du et al. 2022)) in Algo-
rithm 1.

Expressing Vector Representations with V . The GCP
module then expresses vector representations V as follows.
The features V with representation depth r are downscaled
by λ.

z = {vwdz
|wdz

∈ Rr×(r/λ)} (4)

Additionally, V is separately downscaled in preparation to
be subsequently embedded as direction-sensitive edge scalar
features.

Vs = {vwds |wds ∈ Rr×(3×3)} (5)

Deriving Scalar Representations s′. To update scalar rep-
resentations, the GCP module, in the following manner, de-
rives two invariant sources of information from V and com-
bines these with s:

qij = (Vs · Fij) ∈ R9 (6)

q =

{
1

|N (i)|
∑

j∈N (i) qij if Vs represents nodes
qij if Vs represents edges

(7)

s(s,q,z) = s ∪ q ∪ ∥z∥2 (8)

where · denotes the inner product, N (·) represents the
neighbors of a node, and ∥·∥2 denotes the L2 norm. Then,
denote t as the representation depth of s, and let s(s,q,z) ∈

Rt+9+(r/λ) with representation depth (t + 9 + (r/λ)) be
projected to s′ with representation depth t′:

sv = {s(s,q,z)ws + bs|ws ∈ R(t+9+(r/λ))×t′} (9)

s′ = σs(sv) (10)
Deriving Vector Representations V ′. The GCP module

concludes by updating vector representations as follows:

Vu = {zwuz |wuz ∈ R(r/λ)×r′} (11)

V ′ = {Vu ⊙ σg(σ
+(sv)wg + bg)|wg ∈ Rt′×r′} (12)

where ⊙ represents element-wise multiplication and the
gating function σg is applied row-wise to preserve SO(3)
equivariance within V ′.

A.2 GCPNET Layer.
The structure of a GCPNET layer follows closely after the
GVP and GBP layer designs proposed in (Jing et al. 2020)
and (Aykent and Xia 2022), respectively, with the following
key insights and distinctions.

On Line 1 of Algorithm 1, the Centralize operation re-
moves the center of mass from each node position in the
input graph to ensure that such positions are subsequently
3D translation-invariant.

Thereafter, following (Du et al. 2022), the Localize op-
eration on Line 2 crafts translation-invariant and SO(3)-
equivariant frame encodings F t

ij = (atij , b
t
ij , c

t
ij), where

atij =
xt
i−xt

j

∥xt
i−xt

j∥
, btij =

xt
i×xt

j

∥xt
i×xt

j∥
, and ctij = atij × btij , re-

spectively. As described in more detail in Appendix A.5 and
by (Du et al. 2022), these frame encodings are direction
information-complete for edges, allowing networks incor-
porating them to effectively detect and leverage for down-
stream tasks the inter-atomic and force field interactions
present within real-world many-body systems such as small
molecules and proteins.

Line 6 represents our proposed message-passing GCP
module with residual connections (ResGCP). Such a mod-
ule is applied to iteratively update the geometric node and
edge embeddings (i.e., messages) concatenated on Line
5, with residual connections between each iteration (i.e.,
message-passing step) and the one preceding it. Besides pro-
viding several desirable optimization-stabilizing properties
(He et al. 2016), we included these residual connections as
we empirically observed the tendency for standard message-
passing GCP modules to produce vanishing activation sizes
when applied repeatedly to update messages.

On Lines 10 and 13, we introduce a means by which to
update in an SE(3)-equivariant manner the position of each
node in an input 3D graph. In particular, we update node po-
sitions by residually adding learned vector-valued node fea-
tures (χl

vi) to the node positions produced by the previous
GCPNET layer (l − 1). As shown in Appendix A.3, such
updates are initially SO(3)-equivariant, and on Line 13 we
ensure these updates also become 3D translation-equivariant

by adding back to each node position the input graph’s orig-
inal center of mass via the Decentralize operation. In total,
this procedure produces SE(3)-equivariant updates to node
positions. Additionally, for models that update node posi-
tions, we note that Line 14 updates frame encodings Fij us-
ing the model’s final predictions for node positions to pro-
vide more information-rich feature projections on Line 18 to
conclude the forward pass of GCPNET.

In summary, GCPNET receives an input 3D graph G with
node positions x, scalar node and edge features, h and e,
as well as vector-valued node and edge features, χ and ξ.
The model is then capable of e.g., (1) predicting scalar node,
edge, or graph-level properties while maintaining SE(3) in-
variance; (2) estimating vector-valued node, edge, or graph-
level properties while ensuring SE(3) equivariance; or (3)
updating node positions in an SE(3)-equivariant manner.

A.3 Proof of Proposition 1.
Proof. Suppose the vector-valued features given to the cor-
responding layers in GCPNET are node features χi and
edge features ξij that are O(3)-equivariant (i.e., 3D rota-
tion and reflection-equivariant) by way of their construc-
tion. Additionally, suppose the scalar-valued features given
to the respective layers in GCPNET are E(3)-invariant (i.e.,
3D rotation, reflection, and translation-invariant) node fea-
tures hi and edge features eij . Then, following (Du et al.
2022), the Centralize and Localize operations on Lines
1-2 of Algorithm 1 will correspondingly first ensure that
X0 is 3D translation invariant and will proceed to con-
struct SO(3)-equivariant frames Fij . After the construction
of these frames, on Line 3 all node and edge features (i.e., hi,
eij , χi, and ξij) are embedded using a single GCP module
shown.

The operations of a GCP module are illustrated in Figure
1, and their SO(3)-invariance for scalar features and SO(3)
equivariance for vector-valued features is outlined briefly
as follows. Following the proof of O(3) equivariance for
the GVP module in (Jing et al. 2020), the proof of SO(3)
equivariance within the GCP module is similar, with the fol-
lowing modifications. Within the GCP module, the vector-
valued features (processed separately for nodes and edges)
are fed not only through a bottleneck block comprised of
downward and upward projection matrices Dz and Uz but
are also fed into a dedicated downward projection matrix
DS . The output of matrix multiplication between O(3)-
equivariant vector features and DS yields O(3)-equivariant
vector features that are used as unique inputs for a scalar-
ization operation. In such an operation, the dot product is
taken between each O(3)-equivariant vector feature and the
previously-derived SO(3)-equivariant frames Fij , yielding
new SO(3)-invariant scalar features (Du et al. 2022) that
are concatenated with the GCP module’s remaining O(3)-
invariant scalar features (i.e., L2 norm features). Introducing
SO(3)-invariant scalar information into the GCP module in
this way breaks the 3D reflection symmetry that the previ-
ous GVP module enforced, giving rise to SO(3)-invariant
and SO(3)-equivariant updates to scalar and vector-valued
features, respectively.

In particular, the following demonstrates the invariance

for our design of matrix multiplication with our GCP mod-
ule’s projection matrices (e.g., DS). Suppose Wh ∈ Rh×v ,
V ∈ Rv×3, and Q ∈ SO(3) ∈ R3×3. In line with (Jing
et al. 2020), observe for D = (QVT) ∈ R3×v that

∥WhD
T∥2 = ∥Wh(V

T)T∥2 = ∥WhV∥2.
Proceeding onward, Lines 4-12 of Algorithm 1 describe

the operations contained within a single GCPNET layer. Via
the corresponding proof in (Jing et al. 2020), by way of in-
duction all such operations on Lines 5-9 are respectively
SE(3)-invariant and SO(3)-equivariant for features ml

eij and
ml

ξij
. Thereby, so are features hl

i and χl
i, given that the

proof of equivariance for the equivariant LayerNorm and
Dropout operations employed within the GCP module has
previously been concretized by (Jing et al. 2020). Lines 10-
12 conclude the operations of a GCPNET layer by poten-
tially updating the 3D positions of each node i in the input
3D graph. To do so, GCPNET residually updates current
node positions using SO(3)-equivariant vector-valued fea-
tures χl

vi .
Lastly, Lines 13-15 add back the original position of the

centroid of the input 3D graph to each new node position
in the graph, ultimately imbuing position updates within Xl

with SE(3) equivariance. Line 18 then concludes by per-
forming a final SO(3)-invariant and SO(3)-equivariant pro-
jection for scalar and vector-valued features, respectively.
Therefore, GCPNETS are SE(3)-invariant for scalar feature
updates, SE(3)-equivariant for vector-valued node position
and feature updates, and, as a consequence, satisfy the con-
straint proposed in Eq. 1.

A.4 Proof of Proposition 2.
Proof. The proof of SE(3) invariance for scalar node and
edge features, hi and eij , follows as a corollary of Appendix
A.3. Therefore, GCPNETS are SE(3)-invariant concerning
their predicted scalar node and edge features and, as a con-
sequence, are geometrically complete according to the con-
straint in Eq. 2.

A.5 Proof of Proposition 3.
Proof. Suppose that GCPNET designates its local geometric
representation for layer t to be F t

ij = (atij , b
t
ij , c

t
ij), where

atij =
xt
i−xt

j

∥xt
i−xt

j∥
, btij =

xt
i×xt

j

∥xt
i×xt

j∥
, and ctij = atij × btij , respec-

tively. In (Du et al. 2022), this SO(3)-equivariant formula-
tion of F t

ij is proven to be a local orthonormal basis at the
tangent space of xt

i and is thereby geometrically complete,
allowing no loss of geometric information as shown in Ap-
pendix A.5 of (Du et al. 2022). Therefore, GCPNETS are
geometrically complete.

A.6 Implementation Details.
Featurization. For the LBA and PSR tasks, in each 3D in-
put graph, we include as a scalar node feature an atom’s
type using a 9-dimensional one-hot encoding vector for each

Table 4: Summary of GCPNET’s node and edge features for
3D input graphs derived for the LBA and PSR tasks. Here,
N and E denote the number of nodes and edges in G, re-
spectively.

Feature Type Shape

Node Features (h) One-hot encoding of atom type Categorical (Scalar) N × 9
Node Features (χ) Directional encoding of orientation Numeric (Vector) N × 2

Edge Features (e) Radial basis distance embedding Numeric (Scalar) E × 16
Edge Features (ξ) Pairwise atom position displacement Numeric (Vector) E × 1

Total Node features N × 11
Edge features E × 17

Table 5: Summary of GCPNET’s node and edge features for
3D input graphs derived for the NMS task.

Feature Type Shape

Node Features (h) Invariant velocity encoding Numeric (Scalar) N × 1
Node Features (χ) Velocity and orientation encoding Numeric (Vector) N × 3

Edge Features (e) Edge and distance embedding Numeric (Scalar) E × 17
Edge Features (ξ) Pairwise atom position displacement Numeric (Vector) E × 1

Total Node features N × 4
Edge features E × 18

atom. As vector-valued node features, we include forward
and reverse unit vectors in the direction of xi+1 − xi and
xi−1 − xi, respectively (i.e., the node’s 3D orientation). For
the input 3D graphs’ scalar edge features, we encode the
distance ∥xi − xj∥2 using Gaussian radial basis functions,
where we use 16 radial basis functions with centers evenly
distributed between 0 and 20 units (e.g., Angstrom). For the
graphs’ vector-valued edge features, we encode the unit vec-
tor in the direction of xi − xj (i.e., pairwise atom position
displacements).

For the NMS task, in each 3D input graph, we include as
a scalar node feature an invariant encoding of each node’s
velocity vector, namely

√
v2i . Each node’s velocity and ori-

entation are encoded as vector-valued node features. Scalar
edge features are represented as Gaussian radial basis dis-
tance encodings as well as the product of the charges in each
node pair (i.e., cicj). Lastly, vector-valued edge features are
represented as pairwise atom position displacements.

Hardware Used. The Oak Ridge Leadership Facility
(OLCF) at the Oak Ridge National Laboratory (ORNL) is an
open science computing facility that supports HPC research.
The OLCF houses the Summit compute cluster. Summit,
launched in 2018, delivers 8 times the computational per-
formance of Titan’s 18,688 nodes, using only 4,608 nodes.
Like Titan, Summit has a hybrid architecture, and each node
contains multiple IBM POWER9 CPUs and NVIDIA Volta
GPUs all connected with NVIDIA’s high-speed NVLink.
Each node has over half a terabyte of coherent memory (high
bandwidth memory + DDR4) addressable by all CPUs and
GPUs plus 800GB of non-volatile RAM that can be used
as a burst buffer or as extended memory. To provide a high
rate of I/O throughput, the nodes are connected in a non-
blocking fat-tree using a dual-rail Mellanox EDR InfiniBand
interconnect. We used the Summit compute cluster to train
all our models. For the LBA and NMS tasks, we used 16GB

NVIDIA Tesla V100 GPUs for model training, whereas for
the memory-intensive PSR task, we used 32GB V100 GPUs
instead.

Software Used. We used Python 3.8.12 (Van Rossum
and Drake 2009), PyTorch 1.10.2 (Paszke et al. 2019), Py-
Torch Lightning 1.7.7 (Falcon 2019), and PyTorch Geomet-
ric 2.1.0post0 (Fey and Lenssen 2019) to run our deep learn-
ing experiments. For each model trained, PyTorch Lightning
was used to facilitate model checkpointing, metrics report-
ing, and distributed data parallelism across 6 V100 GPUs. A
more in-depth description of the software environment used
to train and run inference with our models can be found at
https://github.com/BioinfoMachineLearning/GCPNet.

Hyperparameters. We use a learning rate of 10−4 for
all GCPNET models. The learning rate is kept constant
throughout each model’s training. Each model is trained for
a minimum of 100 epochs and for a maximum of 12,000
epochs for the NMS task and for a maximum of 1,000
epochs for all other tasks, respectively. For a given task,
models with the best loss on the corresponding validation
data split are then tested on the test split for the respective
task.

Table 6: Hyperparameter search space for all GCPNET
models through which we searched to obtain strong perfor-
mance on the LBA task’s validation split. The final param-
eters for the standard GCPNET model for the LBA task are
in bold.

Hyperparameter Search Space

Number of GCPNET Layers 7, 8
Number of GCP Message-Passing Layers 8
χ Hidden Dimensionality 16, 32
Learning Rate 0.0001, 0.0003
Weight Decay Rate 0
GCP Dropout Rate 0.1, 0.25
Dense Layer Dropout Rate 0.1, 0.25

Table 7: Hyperparameter search space for all GCPNET
models through which we searched to obtain strong perfor-
mance on the PSR task’s validation split. The final parame-
ters for the standard GCPNET model for the PSR task are in
bold.

Hyperparameter Search Space

Number of GCPNET Layers 5
Number of GCP Message-Passing Layers 8
χ Hidden Dimensionality 16, 32
Learning Rate 0.0001, 0.0003
Weight Decay Rate 0, 0.0001
GCP Dropout Rate 0.1, 0.25
Dense Layer Dropout Rate 0.1, 0.25

Table 8: Hyperparameter search space for all GCPNET
models through which we searched to obtain strong perfor-
mance on the NMS task’s validation split. The final param-
eters for the standard GCPNET model for the NMS task are
in bold.

Hyperparameter Search Space

Number of GCPNET Layers 4, 7
Number of GCP Message-Passing Layers 8
χ Hidden Dimensionality 16
Learning Rate 0.0001, 0.0003
Weight Decay Rate 0
GCP Dropout Rate 0.0, 0.1

