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Abstract
In the seed-producing industry, accurate assessment of har-
vested seeds for technical purity is a necessary, yet time-
consuming and labor-intensive task. Automating this task
holds immense potential for enhancing agricultural seed pro-
ductivity, and using computer vision methods to classify
seeds has already demonstrated promising results. Here, we
propose a novel spectral-enhanced image anomaly detection
approach to accurately discriminate Canola seeds (Brassica
napus L.) from visually similar non-Canola seeds. Our bi-
modal approach exploits both RGB and data captured by a
hyperspectral camera of the same sample. For efficient pro-
cessing of this data, we suggest a novel bimodal convolu-
tional autoencoder (BiCAE) architecture, which combines
the strengths of high spatial resolution in RGB and high
spectral resolution in hyperspectral data. We demonstrate that
training our BiCAE model on a Canola dataset allows to learn
a joint latent representation that effectively extracts spatio-
spectral information from both RGB and hyperspectral data.
Experiments show promising results in differentiating be-
tween Canola and non-Canola samples, in particular in de-
tecting various types of non-Canola seeds in previously un-
seen test data. The obtained results highlight the model’s abil-
ity to generalize beyond the training dataset, surpassing uni-
modal models that rely solely on a single modality.

Introduction
In the realm of agricultural seed production, ensuring seed
quality is a major challenge. Avoiding the presence of un-
wanted seeds is not only in the interest of customers, but
in many countries also subject to government regulations
(Kuhlmann and Dey 2021; Batten, Plana Casado, and van
Zeben 2021; Wattnem 2016). The European Union (EU),
e.g., follows a relatively strict policy using ex ante quality
control mechanisms (Batten, Plana Casado, and van Zeben
2021), such as restricting market access to seed lots that
are properly certified (Winge 2015). In practice, this urges
seed producing companies to analyze and classify harvested
seeds on a regular basis. Achieving this on the legally re-
quired level, however, requires not only human analysts, but
often necessitates extensive training for these experts.

It is therefore not surprising that researchers have investi-
gated the use of deep learning techniques based on RGB data
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(see Section 2.1). However, such RGB-based approaches of-
ten overlook the fact that relying solely on color might not
suffice for effectively distinguishing between various types
of seeds. While RGB image analysis can offer valuable in-
formation about the visual properties of seeds, it cannot ex-
tract information about their chemical composition as it is
limited to the visible spectrum. Consequently, this constraint
frequently results in issues like metameric colors and the in-
ability of models to accurately discriminate seed species.

As an alternative, approaches employing hyperspectral
imaging instead of RGB data have been proposed in recent
years, too (Feng et al. 2019; ElMasry et al. 2019). Hyper-
spectral imaging, however, poses its own challenges (Imani
and Ghassemian 2020). It provides lower spatial resolution,
resulting in a lack of capture of critical spatial details of
seeds, such as their shape, surface patterns and irregular-
ities. Furthermore, depending solely on hyperspectral data
may cause challenges in model generalization. This is be-
cause the acquisition of hyperspectral images is susceptible
to external factors such as lighting conditions, atmospheric
influences, and sensor calibration, all of which can introduce
variations that make models sensitive to these changes.

While utilizing either RGB or hyperspectral data provides
the above mentioned challenges, researchers are in prac-
tice often limited to using only one of these modalities.
For the work presented here, we are in the fortunate posi-
tion to work with an industry partner that is able to pro-
vide both RGB and hyperspectral images recorded of the
same seed. The data employed in this study originates from
the agricultural production of Canola seed (Brassica napus
L.). Canola seed is one of the most widely cultivated and
essential oilseeds globally, with diverse applications in the
food, chemical, automotive, and renewable energy industries
(Arthey 2020). Our goal in this project is to differentiate
Canola seeds from non-Canola seeds, where two different
modalities are available. We propose a specialized anomaly
detection system that utilizes both RGB and hyperspectral
images for the given task and evaluate its effectiveness by
analyzing its ability to identify samples from 12 commonly
encountered weed species as non-Canola seed. The results of
our evaluation of the BiCAE architecture hold great promise
in improving efficiency and accuracy of technical seed pu-
rity analysis and the seed sorting processes.



Related Work
Computer Vision for Seed Analysis
To separate wanted from unwanted seed automatically, a
number of technical solutions have been investigated, in par-
ticular using computer vision (Gong et al. 2015; Rahman
and Cho 2016). A widely adopted approach is the classifi-
cation of seed images based on labeled data, with numerous
studies focusing on classification of different seed species
such as rice (Qiu et al. 2018; Kiratiratanapruk et al. 2020),
cottonseeds (Jamuna et al. 2010), sunflower (Luan et al.
2020; Barrio-Conde et al. 2023), tomato seeds (Škrubej et al.
2015), corn seeds (Taylor, Chiou, and Bond 2019; Ali et al.
2020), wheat (Agarwal, Bachan et al. 2023; Yasar 2023),
plum kernels (Ropelewska et al. 2022), and maize (Bi et al.
2022). For Canola seeds, to the best of our knowledge only a
study for bulk classification has been published so far (Qadri
et al. 2021), but not for classification of individual seeds.

Most related studies employ machine learning (ML) ap-
proaches. In recent years, there has been a growing interest
in utilizing deep learning techniques. Transfer learning, for
instance, has been used to classify 14 common seed species
(Gulzar et al. 2020; Hamid et al. 2022) and wheat varieties
(Yasar 2023). Swin transformers have been used for classi-
fying maize varieties (Bi et al. 2022), and AlexNet has been
employed to classify sunflower seeds (Barrio-Conde et al.
2023). A recent development is to incorporate images from
hyperspectral cameras instead of using traditional RGB im-
ages, which has yielded promising results so far (Feng et al.
2019; ElMasry et al. 2019; Fabiyi et al. 2020).

While the mentioned approaches are promising, they pro-
vide a major challenge for practical usage in the agricultural
industry as they implement the task of detecting abnormal
seeds as a classification task, requiring labeled data and be-
ing limited to pre-defined classes of seeds. From a practi-
cal point of view, approaches not relying on labeled abnor-
mal samples – in other words: anomaly detection approaches
– are clearly preferable as they implicitly are applicable to
unknown abnormal samples. In previous work, we were al-
ready able to demonstrate that it is possible to implement
this approach successfully in a unimodal fashion using ei-
ther RGB or hyperspectral data (Kukushkin et al. 2023).

Anomaly Detection in Images. Detecting anomalies in
images is of great significance and finds applications across
various fields (Pimentel et al. 2014). Recently, there has been
a growing interest in the development of unsupervised meth-
ods that do not rely on labeled data (Kiran, Thomas, and
Parakkal 2018). Along with many machine learning models
that perform well at spotting outliers (Perera, Oza, and Patel
2021), such as Isolation Forest (Liu, Ting, and Zhou 2008),
One-Class SVM (Schölkopf et al. 1999), and Local Outlier
Factor (Breunig et al. 2000), three main methods that use
deep learning are also popular: autoencoders, generative ad-
versarial networks, and transfer learning with convolutional
neural networks (Pang et al. 2021).

Probably most popular and currently most widely used for
anomaly detection in images, are autoencoders (AE) (Baldi
2012). For anomaly detection, AEs are trained with a set of
normal images and then applied to analyze new, unseen im-

ages. Anomalies are identified when the AE struggles to ac-
curately reconstruct an input image (Ribeiro, Lazzaretti, and
Lopes 2018). Conventional AEs, however, may face chal-
lenges in reconstructing complex image features such as tex-
tures and patterns, leading to false positives or false nega-
tives. To address this limitation, researchers have proposed
various modifications to the standard AE architecture. For
example, denoising autoencoders (Lu et al. 2017) and the
inclusion of regularizers in the loss function (Vincent et al.
2008; Rifai et al. 2011; An and Cho 2015; Makhzani et al.
2015) have been suggested to enhance reconstruction accu-
racy and improve the performance of anomaly detection.

Neural Networks for Spectroscopic data. Spectroscopic
data does typically not exhibit the same level of high-
dimensional and highly non-linear relationships as image
data (Swinehart 1962). Networks architectures designed for
impedance (Schmid, Bogdan, and Günzel 2013), Raman
(Liu et al. 2017), Near-infrared (NIR) (Cui and Fearn 2018),
and XRD (Lee et al. 2020) spectroscopic data are there-
fore typically shallow, often limited to only a few layers.
Attempts to adapt computer vision models, such as ResNet-
50, to spectroscopic data have shown promise, outperform-
ing traditional methods such as Random Forests (Lee et al.
2020). However, achieving perfect prediction accuracy re-
mains a challenge, as demonstrated in a recent benchmark
study (Schuetzke, Szymanski, and Reischl 2023).

Multimodal Autoencoders
In the domain of multimodal learning, several studies have
explored the use of bimodal autoencoders, which incorpo-
rate multiple types of data. These models aim to learn a
shared representation between different input modalities, en-
abling their utilization in various tasks. Ngiam et al. (Ngiam
et al. 2011), for instance, proposed a bimodal deep autoen-
coder for speech recognition, leveraging both acoustic and
visual data. Expanding on this concept, Sayed et al. (Sayed,
ElDeeb, and Taie 2023) introduced a Variational Autoen-
coder (VAE) specifically designed for audiovisual data. Ad-
ditionally, Nguyen et al. (Nguyen et al. 2021) employed two
autoencoders with Long Short-Term Memory (LSTM) to ex-
tract audiovisual features for emotion recognition. Gong et
al. (Gong et al. 2021) proposed a variational selective au-
toencoder for bimodal image data. For video classification
tasks, researchers have utilized stacked autoencoders (Liu,
Feng, and Zhou 2016), where individual stacked contractive
autoencoders were created for each modality. The outputs
of these encoders were then combined and fed into a mul-
timodal stacked contractive autoencoder, allowing for the
fusion of text, audio, and image modalities. Similarly, in
video event detection (Jhuo and Lee 2014), fusion of mul-
tiple modalities was employed.

In summary, the integration of various types of autoen-
coders and multimodal fusion techniques has shown signifi-
cant value in enhancing the capabilities of anomaly detection
and multimodal learning systems. To the best of our knowl-
edge, however, this study represents the first application of
unsupervised learning techniques in the field of seed species
anomaly detection, further expanding the range of method-
ologies employed in this domain.



Methodology
To enable the integration of RGB images as input, we stan-
dardized their dimensions by resizing or padding them to
a uniform size of 192x192x3 pixels. Furthermore, to in-
crease the computational efficiency within hyperspectral ap-
proaches, we extracted a region of interest (ROI) from the
central area of the hyperspectral images. This selected ROI
has dimensions of 12x12x300. This ROI was averaged along
the first and second dimensions so that the final vector is
300x1, which allows focused data processing on the most in-
formative region while significantly reducing computational
complexity.

Unimodal Baselines
Considering the presence of two different types of data -
hyperspectral data, characterized by high spectral resolution
but low spatial resolution, and RGB data, characterized by
low spectral resolution but high spatial resolution-we pro-
pose an effective approach for handling these data types.
It’s important to highlight that the selection of baselines was
constrained by the high-dimensionality of our dataset, mean-
ing that not all approaches (e.g. One-Class SVM, clustering
methods) are suitable for our specific task.

Local Outlier Factor. We employ two specialized uni-
modal Local Outlier Factor (Breunig et al. 2000) models, tai-
lored either for hyperspectral (HS-LOF) or RGB data (RGB-
LOF). LOF identify instances in a dataset that deviate signif-
icantly from the local patterns of their neighboring points. It
measures the degree of outlierness of a data point by com-
paring its density with that of its neighboring points.

Isolation Forest. The second category of baselines in-
cludes two unimodal tree-based Isolation Forest (Liu, Ting,
and Zhou 2008) models. Analogous to the LOF baseline, we
created individual models for each modality: HS-IForest and
RGB-IForest. Isolation Forests are known for their rapid and
efficient performance, making them particularly well-suited
for extensive datasets like ours. For our experimentation, we
employed the pyod (Zhao, Nasrullah, and Li 2019) imple-
mentation with a parameter of n estimators = 500.

Autoencoder. In the third category of baseline, we in-
cluded two unimodal autoencoder-based models, namely
RGB-AE and HS-AE (as shown in Fig. 1). In essence, each
AE operates in two stages: Initially, it takes an input image
ri and compresses it into a lower-dimensional representa-
tion. In the subsequent stage, the AE aims to reconstruct the
input image with the highest accuracy. To this end, it em-
ploys the Mean Squared Error (MSE) loss function for HS-
AE (see Eq. 1) and Multi-Scale Structural Similarity Index
(MS-SSIM) for RGB images (see Eq. 2), which both mea-
sures the difference between the reconstructed images r′i and
the input image ri.

MSE =
1

n

n∑
i=1

(ri − r′i)
2 (1)

MS-SSIM(ri, r
′
i) =

N∏
i=1

SSIMi(ri, r
′
i)

βi (2)
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Figure 1: Architectures of RGB-AE (a) and HS-AE (b).

It is important to note that our HS-AE architecture dif-
fers from RGB-AE. HS-AE utilizes exclusively fully con-
nected layers, effectively capturing the linear spectral fea-
tures present in the spectra. Conversely, RGB-AE employs a
ConvNet design with convolutional layers to extract spatial
information, as depicted in Figure 1a.

We avoided using batch normalization between convolu-
tion and fully connected layers. This is because batch nor-
malization tends to normalize both normal and anomalous
data distributions, which could make the differences be-
tween the two classes less distinct. For both HS-AE and
RGB-AE, we opted for the Gaussian Error Linear Unit
(GELU) activation function, as introduced in (Hendrycks
and Gimpel 2016). GELU provides a smoother activation
function compared to ReLU, effectively capturing non-
linearity and improving performance in deeper networks.

Bimodal Convolutional Autoencoder (BiCAE)
In this section, we present our main contribution, which is
a bimodal convolutional autoencoder called BiCAE. This
model leverages the strengths of both hyperspectral (HS)
and RGB data to enhance its performance (see Fig.2). Key
features of the BiCAE are:

• Combined Loss: To effectively fuse information from
both modalities and address the challenge of combining
losses with significantly different ranges, we employ the
geometric mean. The geometric mean has the ability to
mitigate the influence of extreme values. Hence, the final
loss for the BiCAE is formulated as follows:

Loss =
√
MSEhs ×MS-SSIMrgb (3)

• Fusion Module: The fusion module is responsible for
integrating the features from different modalities within
the network. In line with the taxonomy presented by Bal-
trušaitis et al. (Baltrušaitis, Ahuja, and Morency 2018),
we adopt the early-fusion approach. This involves con-
catenating the input features from different modalities.

By incorporating these features, the proposed bimodal
convolutional autoencoder, namely BiCAE, which aims to
achieve improved performance by effectively leveraging
both HS and RGB data.
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Figure 2: Overview our Bimodal Convolutional Autoencoder (BiCAE) architecture for detection of non-Canola seeds.

Experiments
In order to evaluate the reliability of our anomaly detection
approach, we performed extensive tests using both Canola
seeds and several types of non-Canola seeds.

Data
For evaluation of the proposed BiCAE architecture, we uti-
lized a training dataset that included 4750 RGB images and
their corresponding 4750 hyperspectral images of Canola.
We set aside a separate dataset specifically for testing pur-
poses, i.e., to assess the effectiveness of our approach. This
test set comprised 4000 RGB images and 4000 hyperspec-
tral images. Among these, 1000 images from each imaging
modality belonged to the normal class, specifically repre-
senting the Brassica napus L. species. The remaining 600
images in the test set were evenly distributed among 12
distinct weed species: (i) Anchusa arvensis L., (ii) Arc-
tium lappa L., (iii) Alopecurus myosuroides L., (iv) Bis-
torta officinalis L., (v) Echinochloa crus-galli L., (vi) Fal-
lopia convolvulus L., (vii) Galium aparine L., (viii) Gera-
nium pratense L., (ix) Geranium dissectum L., (x) Galeop-
sis tetrahit L., (xi) Polygonum aviculare L. and (xii) Sinapis
arvensis L. (see Figure 3 and Table 1). The main objective
of the evaluated anomaly detection task was to accurately
identify these 1600 images from the anomalous class using
an unsupervised learning.

The hyperspectral images were captured using the
Resonon (USA) Pika L 100121-220 model. These images
covered a range of 300 wavelengths within the visible and
near-infrared (VNIR) segment of the electromagnetic spec-
trum, spanning from 380 nm to 1000 nm with a resolution of
5 nm (see Figure 4). The RGB images were obtained using
the Sony (Japan) IMX477 model.

Training Setting
We trained both unimodal baseline models as well as our
BiCAE architecture. Each model in our study was trained
using the same configuration. This involved employing the
Lion optimizer (Chen et al. 2023) with a learning rate of
0.0001 for 100 epochs, along with a learning rate schedule.

To expand the training dataset, we employed data augmen-
tation techniques, including vertical and horizontal flips, as
well as rotations. Additionally, a batch size of 250 was em-
ployed during the training process.

The unimodal models, HS-AE and RGB-AE as well
as HS-Branch and RGB-Branch, were trained using Mean
Squared Error (MSE) loss, as depicted in Equation 1. How-
ever, for our proposed bimodal convolutional AE, BiCAE,
we utilized a combined loss function (see Equation 3).

To assess and compare the performance of the two mod-
els, we employed several evaluation metrics. These metrics
included: (i) the Area Under the ROC Curve (AUC), (ii) Av-
erage Precision (AP), (iii) Accuracy, (iv) Sensitivity, and (v)
Specificity. To enhance the reliability of our findings, we
train each model three times and evaluated it on an aug-
mented test dataset (same augmentation as for train dataset)
and then averaged the results to determine the final perfor-

Class Species Train Test
∑

Normal B. napus 4750 1000 5750

Anomaly

A. arvensis - 50 50
A. lappa - 50 50

A. myosuroides - 50 50
B. officinalis - 50 50
E. crus-galli - 50 50

F. convolvulus - 50 50
G. aparine - 50 50
G. pratense - 50 50

G. dissectum - 50 50
G. tetrahit - 50 50

P. aviculare - 50 50
S. arvensis - 50 50∑

13 4750 1600 6350

Table 1: Sample Allocation in Training and Test Sets per
each (HS/RGB-) modality. The models under consideration
are exclusively trained on B.napus seeds, with seeds from all
other species categorized as the ”anomaly” class.
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Figure 3: Example images from the test dataset. (a) Repre-
sents the normal class, showing images of B. napus, (b-m)
Depict anomalous classes, displaying images of A. arvensis
L., A. lappa L., A. myosuroides L., B. officinalis L., E. crus-
galli L., F. convolvulus L., G. aparine L., G. pratense L., G.
dissectum L., G. tetrahit L., P. aviculare L. and S. arvensis
L. respectively.

mance. This should ensure that the models were evaluated
not on identical data during each run.

The threshold for classification was determined using the
ROC curve. We opted for this approach as the selection of
the custom threshold can have a significant impact on met-
rics (ii) to (iv), leading to variations in their values.

Results
All trained anomaly detection models were evaluated on
the test data using the metrics Accuracy (Acc.), Sensitivity
(Sen.), Specifity (Spe.), Area Under Curve (AUC), and Aver-
age Precision (AP). Table 2 shows these metrics for both uni-
modal baselines as well as for our novel bimodal approach
(BiCAE). The accuracy is compared visually in Figure 5,
offering additional clarity.

Analyzing these results, it becomes evident that the Bi-
CAE model outperformed all other methods across other
metrics, exhibiting superior Accuracy (0.966), Sensitivity
(0.985) and Specificity (0.955) in distinguishing between in-
liers and outliers.
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Figure 4: Spectra of the Region of Interest (ROI) for each
seed species in the test dataset, illustrating the mean and
standard deviation of a 12x12x300 dimensional ROI along
first last dimension

Apart from the BiCAE, the models trained solely on hy-
perspectral data demonstrated better performance compared
to their RGB counterparts. Notably, the lightweight HS-LOF
showcasing relatively high Accuracy (0.965), Sensitivity
(0.978) and Specificity (0.957). Conversely, its RGB-LOF
counterpart displayed significantly lower values across Ac-
curacy (0.871), Sensitivity (0.773) and Specificity (0.931),
as depicted in the results table. The similar results are shown
by HS-AE and RGB-AE. HS-AE outperformed RGB-AE
and reached higher results in terms of Accuracy (0.959),
Sensitivity (0.982) and Specificity (0.945).

Notably, RGB-IForest outperformed its hyperspectral

Figure 5: Average True Positive Rate and True Negative
Rate for class (normal/anomaly)



Model Accuracy Sensitivity Specificity AUC AP

HS-LOF 0.965±0.000 0.978±0.000 0.957±0.000 0.984±0.000 0.964 ±0.000
RGB-LOF 0.871±0.002 0.773±0.013 0.931±0.005 0.904±0.001 0.896±0.001
HS-IForest 0.883±0.009 0.952±0.005 0.842±0.016 0.953±0.001 0.905±0.001
RGB-IForest 0.918±0.001 0.877±0.006 0.942±0.006 0.960±0.001 0.949±0.001
HS-AE 0.959±0.002 0.982±0.004 0.945±0.001 0.989±0.000 0.980±0.000
RGB-AE 0.924±0.005 0.875±0.012 0.954±0.012 0.950±0.001 0.952±0.002
BiCAE 0.966±0.004 0.985±0.007 0.955±0.010 0.995±0.000 0.992±0.001

Table 2: Average test metrics across three runs for evaluated models
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Figure 6: Performance comparison of considered models: (a) ROC curve and Area under the ROC curve, and (b) Precision-
Recall curve and Average Precision.

analogue at most metrics, reaching higher Accuracy (0.918),
lower Sensitivity (0.877), and higher Specificity (0.942).

Figure 6a and Figure 6b illustrate the performance of eval-
uated approaches. Among these, the BiCAE achieved an the
highest Area Under the Curve score of 0.995, outperform-
ing other models such as HS-AE (0.989), HS-LOF (0.984),
HS-IForest (0.953), RGB-IForest (0.960) RGB-AE (0.950),
and RGB-LOF (0.904). Moreover, the BiCAE demonstrated
notably higher Average Precision values, securing a score of
0.992 across a range of potential decision thresholds.

Discussion
Model Comparison
Our BiCAE demonstrates remarkable reliability and effec-
tiveness in accurately distinguishing between Canola and
non-Canola samples, as evidenced by the results obtained
from its training and testing phases. To assess and compare
the performance of the seven models, we further analyzed
two key metrics: AUC and AP. AUC is a widely used mea-
sure that evaluates a model’s overall ability to differentiate
between positive and negative samples across different deci-
sion thresholds. It is particularly valuable in balanced clas-
sification problems and ranking predictions. On the other
hand, AP assesses the trade-off between precision and re-

call at various decision thresholds, making it useful in im-
balanced classification scenarios.

Achieving a balance between precision and recall is cru-
cial here, which makes AP particularly relevant. Therefore,
when comparing these metrics, AP plays a more significant
role in our anomaly detection task. When considering AUC
and AP values of the evaluated models it becomes evident
that our BiCAE model outperforms all unimodal models.
The higher AUC score of BiCAE indicates its superior abil-
ity to discriminate between Canola and non-Canola samples
across multiple decision thresholds. Further, the AP metric
confirms these findings by highlighting the precision-recall
trade-off achieved by the BiCAE in our experiment.

The significance of BiCAE’s performance highlights the
need to consider not only the visible information of RGB im-
ages, but also the chemical composition information that can
be extracted using hyperspectral cameras. This is beneficial
in cases where species have very similar shapes, color and
texture, i.e. they appear identical to the human eye or trichro-
matic camera, similar texture or shape, so that using only
the visible information will give insufficient results. Further-
more, our study demonstrated a case whereby the incorpo-
ration of hyperspectral information aided in distinguishing
between such two species, namely B. napus and S. arvensis.
To sum up, the superior performance of bimodal approach is



in line with the Ref. (ElMasry et al. 2019), which highlights
the benefits of using hyperspectral data with RGB data in a
broad range of applications.

Societal Impact
The development of autoencoder-based methods for detect-
ing anomalous seed species holds promise for agricultural
applications, in particular where current approaches are ex-
ceeded in terms of performance or reliability. At the same
time, however, it is crucial to consider potential negative so-
cietal impacts that may arise from usage of such approaches
in real-world scenarios. For the here described application,
we would like to point in particular the following technolog-
ical and practical aspects:

• Bias and Discrimination: AE models trained on bi-
ased or unrepresentative datasets can maintain biases and
discrimination. This may result in misclassification of
seed species, leading to technical impurities which might
compromise legal thresholds and could disturb contrac-
tual agreements between seed suppliers and buyers or
promoting inequitable agricultural practices, such as the
excessive use of herbicides.

• Overreliance on Automation: While autoencoder-
based systems can enhance efficiency, an excessive de-
pendence on automation may undermine the role of agri-
cultural experts and their valuable domain knowledge. It
is important to include human expertise and manual in-
spection to ensure accurate identification of seed species.
However, from our perspective, the integration of such
systems is unlikely to result in the loss of many highly
valuable seed analyst positions. This is primarily because
manual seed classification is a extremely monotonous
task that lacks ergonomic suitability.

• Disruption of Traditional Agricultural Practices: Im-
plementing automated systems like autoencoder-based
anomaly detection may disrupt traditional agricultural
practices, affecting small-scale farmers or seed produc-
ers both socially and economically. Therefore, it is cru-
cial to consider the potential impacts on local knowledge
and livelihoods.

To mitigate these potential negative societal impacts, it is
essential to adopt a responsible and inclusive approach. This
involves several measures, including ensuring diverse and
representative training datasets, addressing biases in data
collection and model development, involving stakeholders
in decision-making processes, and prioritizing transparency
and accountability in the deployment of automated systems.
Further, ongoing monitoring and evaluation of the socio-
environmental consequences of such technology should be
conducted to identify and mitigate any adverse effects.

Conclusion and Outlook
Our study has demonstrated that automating the differentia-
tion between Canola and non-Canola seed can be improved
using both RGB and hyperspectral images. We have suc-
cessfully developed and evaluate a novel architecture that

illustrate the effectiveness of autoencoders (AE) in detect-
ing abnormal seeds using both RGB and hyperspectral data.
We also investigated the conditions under which feature fu-
sion is effective. To the best of our knowledge, this is the
first study that applies anomaly detection in this context.

Notably, the remarkable performance of the BiCAE archi-
tecture underscores the significance of incorporating both
RGB and hyperspectral data into a unified model. These
findings indicate that our approach holds promise for im-
proving and expediting not only Canola seed production but
also agricultural seed production as a whole. The overall
goal is to integrate our approach into the development of
an AI-supported platform that combines advanced machine
learning techniques with robotic sensors and actors.

Moving forward, our future research aims to advance
anomaly detection techniques in agriculture. We plan to fur-
ther investigate how two modalities can be combined within
a bimodal AE, such as exploring methods for integrating
losses from both modalities. Additionally, we intend to ex-
pand our dataset to include a wider range of seed species
and evaluate the performance of our architecture on these
new additions. Furthermore, we aim to identify the specific
wavelengths that offer valuable information for distinguish-
ing different types of plant seeds. This will simplify the
anomaly detection process, improve efficiency, and poten-
tially reduce the costs of agricultural seed production.
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