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Abstract

In light of growing threats posed by climate change in gen-
eral and sea level rise (SLR) in particular, the necessity for
computationally efficient means to estimate and analyze po-
tential coastal flood hazards has become increasingly pressing.
Data-driven supervised learning methods serve as promising
candidates that can dramatically expedite the process, thereby
eliminating the computational bottleneck associated with tradi-
tional physics-based hydrodynamic simulators. Yet, the devel-
opment of accurate and scalable coastal flood prediction mod-
els, especially those based on Deep Learning (DL) techniques,
has been plagued with two major issues: (1) the scarcity of
training data and (2) the high-dimensional output required
for detailed inundation mapping. To remove this barrier, we
present a systematic framework for training high-fidelity and
high-resolution Deep Vision-based coastal flood prediction
models in low-data settings. We demonstrate the proposed
workflow on different existing DL architectures, including
a fully transformer-based architecture and a Convolutional
Neural Network (CNN) with additive attention gates. Addi-
tionally, we introduce a deep CNN architecture tailored specif-
ically to the coastal flood prediction problem at hand. The
model was designed with a particular focus on its compact-
ness (only about 0.36 Mil. trainable parameters) so as to cater
to resource-constrained scenarios and accessibility aspects.
The performance of the developed DL models is validated
against commonly adopted geostatistical regression methods
and traditional Machine Learning (ML) approaches, demon-
strating substantial improvement in prediction quality (ranging
from 100% to 400% across key metrics). Lastly, we round up
the contributions by providing a meticulously curated dataset
of simulated inundation maps for the coast of Abu Dhabi,
available at https://doi.org/10.7910/DVN/M9625R, which can
serve as a benchmark for evaluating future coastal flood predic-
tion models. The complete source code of the proposed frame-
work, including the trained models and the evaluation scripts,
can be accessed at https://github.com/Arnukk/CASPIAN.

1 Introduction
More than 60% of the world’s population resides in coastal
areas that are within 60 km from the shore (UN Atlas of the
Oceans 2016). The looming global warming and its byprod-
ucts, such as rising sea levels and more frequent and severe
storm surges (Garner et al. 2017; Sweet et al. 2022), render
these regions increasingly susceptible to flooding incidents,
which can inflict massive humanitarian, ecological, and eco-

Figure 1: Flood depth map of Abu Dhabi’s coast produced
with a physics-based high-fidelity hydrodynamic simulator
(presented in Sec. A) under a sample shoreline fortification
scenario and an SLR projection of 0.5 meters. The coastline
was partitioned into 17 segments (precincts) of which those
protected by seawalls are delineated by black solid lines,
whereas the unprotected are marked with dashed lines. The
colorbar measures the magnitude of estimated inundations
at 12066 nearshore locations of interest, plotted as scattered
points.

nomic devastation. To put this into perspective, in 2021 alone,
hydro-related disasters, including tidal and pluvial flooding
and storm surges, caused worldwide more than $ 224 billion
in loss and are projected to cost the global economy $ 5.6 tril-
lion by 2050 (Dickie 2022). Ensuring the safety and longevity
of coastal zones against rising flood waters will require vari-
ous interventions (Jongman 2018), among which construction
of protective structures like seawalls, levees, and storm barri-
ers is set to play a major role (Hummel et al. 2021). Although
beneficial for local flood protection, these engineered forti-



fications may alter the hydrodynamics along the coast, ampli-
fying water levels outside of their perimeter and spreading in-
undations to other (otherwise unaffected) regions (Wang et al.
2018; Haigh et al. 2020; Hummel et al. 2021). For instance, as
demonstrated in (Hummel et al. 2021), protection of certain
individual stretches of the coast in San Francisco Bay can ex-
acerbate flooding in other zones by up to 36 million cubic me-
ters owing to the effects of the modified shoreline geometry.

Progress in computing capabilities and numerical model-
ing techniques enabled the development of physics-based
high-fidelity simulators capable of resolving the detailed
hydrodynamics around seawalls. While these tools can ac-
curately simulate nearshore hydrodynamics, providing fine-
grade time-series data on estimated depth, duration, and ve-
locity of floods, they are notoriously expensive in terms of
computational time and resources. As a result, direct adoption
of these high-fidelity simulators in studies requiring exten-
sive number of model realizations (e.g., optimal shoreline
protection planning, sensitivity analysis) remains impractical.
To exemplify, with such a hydrodynamic model in place (de-
scribed in Sec. A), simulation and post-processing of a single
protection scenario for the coast of Abu Dhabi, illustrated in
Fig. 1, demands approximately 72 hours on 128 HPC cores.

Data-driven supervised learning methods have emerged as
promising alternatives that can unlock substantial speed-up
gains. The principle behind these methods, which are
also known as surrogate models or metamodels in the
coastal engineering literature, is to emulate the high-fidelity
numerical simulators by inferring the relationships between
their inputs and outputs without explicit representation of
the underlying sophisticated physical processes and the
differential equations that govern their behavior. A prominent
issue in the design of coastal flooding metamodels, as also
highlighted in (Jia, Wang, and Stacey 2019; Kyprioti et al.
2021; Rohmer et al. 2023), concerns the dimensionality
of the output predictions. The geographical domains
considered in the analyses of nearshore areas are typically
vast, leading to high-dimensional prediction targets with
tens of thousands of points. Another major obstacle for
surrogate hydrodynamic models, especially those employing
Deep Learning (DL) methods (Stanton 2023), lies in the
scarcity of training data since, as noted above, generating
annotated samples via high-fidelity simulators consumes
significant time and resources. These two factors combined
have posed a solid challenge, leaving the development of
efficient DL-based surrogate models for high-resolution
coastal flood prediction problems elusive.

To address this concern, we present a strategy for synthe-
sizing scalable and performant DL-powered coastal flood
prediction models in data-scarce learning settings. For com-
prehensiveness, the flood prediction problem is studied con-
sidering both anticipated climate change-induced effects and
shoreline adaptations. The core idea behind the framework
is to recast the underlying multi-output regression problem
as a computer vision task of translating a two-dimensional
segmented grid into a matching grid with real-valued entries
corresponding to water depths. This, in turn, enables the incor-
poration of effective data augmentation techniques, thereby
facilitating the training of high-performance DL-based sur-

rogate models. More concretely, the key contributions of the
present work are three-fold:

• First, we provide a systematic approach for training ef-
ficient Deep Vision-based end-to-end coastal flood pre-
diction models in low-data settings. We test the proposed
methodology on different neural networks, including two
existing vision models: a fully Transformer-based archi-
tecture (SWIN-Unet (Cao et al. 2022)) and a Convolu-
tional Neural Network (CNN) with additive attention
gates (Attention U-net (Oktay et al. 2018)). The devel-
oped models are benchmarked against existing geostatis-
tical regression methods and traditional ML approaches
commonly employed in the field. The comparison results
reveal significant gains in predictive performance, with
improvements from the developed DL-based surrogate
models ranging from 100% to 400% across key metrics.
The complete source code for reproducing the conducted
analysis, including the trained models, can be accessed at
https://github.com/Arnukk/CASPIAN.

• Next, we introduce a deep CNN architecture, dubbed Cas-
caded Pooling and Aggregation Network (CASPIAN),
stylized explicitly for the coastal flood prediction problem
at hand. The introduced model was designed with a partic-
ular focus on its compactness and practicality to cater to
resource-constrained scenarios and accessibility aspects.
Specifically, featuring as little as 0.36 Mil. parameters
and only a few main hyperparameters, CASPIAN can be
easily trained and fine-tuned on a single GPU. On the cur-
rent dataset, the performance of CASPIAN approached
remarkably close to the results produced by the physics-
based hydrodynamic simulator (on average, with 97% of
predicted floodwater levels having less than 10 cm. error),
effectively reducing the computational cost of producing
a flood inundation map from days to milliseconds.

• Lastly, we round up the contributions by providing a
carefully curated database of synthetic flood inundation
maps of Abu Dhabi’s coast under 174 different shore-
line protection scenarios. The maps were generated via
a high-fidelity physics-based hydrodynamic simulator
(see Sec. A) under a 0.5-meter SLR projection. The pro-
vided dataset, available at https://doi.org/10.7910/DVN/
M9625R, to the best of our knowledge, is the first of its
kind, and thus can serve as a benchmark for evaluating
future coastal flooding metamodels.

2 Literature Review
Data-driven surrogate models have been explored to
predict various categories of floods, including pluvial
(rainfall-induced), fluvial (riverine), and coastal (often linked
to storm surges). From a design perspective, the existing
models can be organized under two broad themes: end-to-end
and multi-stage. Another layer of differentiation unfolds in
the scope of targeted predictive outcomes: the risk, extent,
intensity, or dynamics of flooding. In the paragraphs below,
we provide a concise overview of recent flood prediction
studies following the above categorization, while for a more
exhaustive survey, the reader is referred to (Mosavi, Ozturk,



and Chau 2018; Bentivoglio et al. 2022; Jones et al. 2023;
Bomers and Hulscher 2023).

In (Chu et al. 2020), an ensemble data-driven method for
emulation of fluvial inundations was investigated and applied
to a river segment in Queensland, Australia. The area of
interest was represented as a collection of 14, 227 discrete
locations, and for each point, a separate feed-forward type
artificial neural network was developed to regress the fu-
ture state of water depth based on time-series data from past
tidal levels and inflows. For pluvial floods, (Guo et al. 2021)
designed a CNN-based surrogate modeling approach that
supports end-to-end predictions in large-scale urban areas.
To cope with the high spatial resolution, the images raster-
ized from the terrain properties of the catchment areas were
split into fixed-size patches, which then, along with rainfall
intensities, were fed to the CNN as inputs. Expanding the
scope further, the work in (Hofmann and Schüttrumpf 2021)
provided a pluvial flooding metamodel that accommodates
spatially non-uniform precipitation events. The metamodel,
termed floodGAN, employs a conditional Generative Adver-
sarial Network (cGAN) to predict 2D inundation depth maps
directly from raw images of rainfall distribution data.

In nearshore domains, flood prediction has often been
studied under one specific triggering factor (e.g., wind or a
short-term extreme event). For the latter setting, the authors
of (Al Kajbaf and Bensi 2020) explored and summarized
the frequently employed surrogate modeling techniques in
the literature. Three techniques were covered, namely Artifi-
cial Neural Networks, Gaussian Process Regression (a.k.a.,
Kriging), and Support Vector Regression. Based on each, a
metamodel was trained to predict storm surge heights at four
selected locations with different coastal characteristics, and
their performance was assessed.

To support high-resolution predictions over extended
coastal/urban domains, prior works have alternatively con-
sidered two-stage modeling approaches that involve a dimen-
sionality reduction step. For instance, in (Kyprioti et al. 2021),
the landfall locations of storms along the coasts of New Jer-
sey and New York were first grouped with the K-means
algorithm, then the hazard curves produced for the centroids
of these clusters were interpolated over the original grid via a
Kriging-based surrogate model. In (Jia et al. 2016; Jia, Wang,
and Stacey 2019; Kyprioti et al. 2022; Rohmer et al. 2023),
different combination strategies of Kriging metamodeling
with Principal Component Analysis (PCA) and clustering
were explored. The study in (El Garroussi et al. 2022) pro-
posed a two-step surrogate hydraulic model in which the
low-dimensional latent representation of the output variables
is inferred through an Autoencoder (AE) as opposed to PCA.
The results based on AE reduction were found to yield more
accurate predictions. Unlike their end-to-end counterparts,
two-step approaches tend to propagate errors due to their se-
quential structure, thereby potentially limiting the predictive
power of the resulting surrogate model.

With the exception of the work in (Jia, Wang, and Stacey
2019), to the best of our knowledge, flood prediction has not
been studied under the joint consideration of future climate
change impacts and shoreline armoring scenarios. In (Jia,
Wang, and Stacey 2019), the authors developed a two-stage

surrogate hydrodynamic model, based on Kriging and PCA,
to investigate the sensitivity of coastal hydrodynamics to
shoreline alterations caused by seawall installations under a
projected SLR of 1.5 meters. The model was designed for
the county-level protection of the San Francisco Bay area
and evaluated (under leave-one-out cross-validation) on a
dataset of 40 scenarios simulated with a high-fidelity hydro-
dynamic model Delft3D. Here, we approach this coastal flood
prediction problem in a different fashion by first reformulat-
ing the problem as a computer vision task, then designing
end-to-end DL-based surrogate models that directly support
high-resolution predictions. Compared to the aforementioned
common two-stage approach of Kriging with PCA, the pro-
posed DL models confer measurable gains in terms of predic-
tive performance and generalizability, as verified by extensive
evaluations reported in Sec. 5.

3 Problem Statement
In this section, we formalize the coastal flood prediction
problem under study and discuss the associated challenges.

Notational Convention: In what follows, unless stated other-
wise, constants or variables are denoted in normal font (e.g.,
H , n), vectors and matrices are distinguished by boldface
lowercase and uppercase letters, respectively (e.g., x, X),
and sets are written in calligraphic or blackboard fonts (e.g.,
X , R). We let 0 and 1 symbolize the vectors of all zeros and
ones, respectively. Lastly, for a given positive integer n, the
notation [n] shall serve as a shorthand for {1, 2, . . . , n}.

Problem Definition: As mentioned in Sec. 1, shoreline adap-
tations caused by the installation of protective engineering
structures (e.g., seawalls) can alter coastal water levels and
flood patterns. Specifically, depending on which segments of
the coastline these seawalls are raised (i.e., protection sce-
nario), the ensuing hydrodynamic interactions and feedbacks
can elevate or decrease water levels along other (unprotected)
parts of the coast. Accordingly, we focus on the following
problem: given an input protection scenario, predict the max-
imum floodwater levels along the coast. To formalize, denote
by dx the number of candidate shoreline segments consid-
ered for fortification and let xi ∈ {0, 1} be the corresponding
decision made for the segment i ∈ [dx] with 1 indicating
the placement of containments and 0 otherwise. Then, a pro-
tection scenario would be represented by a dx-dimensional
binary vector x and the set of all possible protection scenar-
ios (2dx in total) can be defined as X ≜ {x | x ∈ {0, 1}dx}.
Let y be a (non-negative) real-valued vector quantifying
the peak water levels at dy nearshore locations of inter-
est. With this notation, the prediction problem at hand can
be formulated as a regression task of learning a mapping
function f : x ∈ X → y ∈ Rdy provided with a set
{(xk,yk) | k ∈ [n],xk ∈ X ,yk ∈ Rdy} of n available
training examples. Since the generation of these input-output
pairs involves running high-fidelity hydrodynamic simula-
tions, extensive data collection can prove prohibitively ex-
pensive in terms of both time and resources. Consequently,
for double-digit values of dx, the cardinality of the train-
ing set can turn disproportionately small compared to that
of the input space (i.e., n ≪ 2dx), enforcing an extremely



low-resource learning setting. The inference of f is further
complicated by its output size dy, which is typically in the
order of tens of thousands (here, dy = 12066).

4 Proposed Deep Visual Learning Framework
The workflow of the proposed vision-based surrogate mod-
eling framework, graphically summarized in Fig. 2, can be
dissected into four parts, of which first is the generation of
training tuples (xk,yk). It is crucial to ensure a sufficiently
representative selection of points (xk)k∈[n] for which f will
be evaluated, especially under the imposed low-data regime.
The scheme adopted herein relies on a combination of ju-
dicious manual selection and random sampling. From the
former category, we include the following base scenarios:
full protection (i.e., x = 1), protection of the first and sec-
ond halves, no protection (i.e., x = 0), protection of single
precincts (i.e., all binary unit vectors in X ) and the inverses
thereof, resulting in a total of 4+2dx input instances. The re-
maining (out of n) random cases are constructed by drawing
uniformly distributed random points from a dx-dimensional
unit cube via Latin Hypercube Sampling (McKay, Beckman,
and Conover 1979), then rounding their entries to the nearest
integer value.

In the former category, the following base scenarios were
included: full protection (i.e., x = 1), protection of the first
and second halves, no protection (i.e., x = 0), protection
of single precincts (i.e., all binary unit vectors in X ) and
the inverses thereof, resulting in a total of 4 + 2dx input
instances. For each selected input xk, the respective output
yk was computed by carrying out a numerical simulation
with the coupled hydrodynamic model described in Sec. A.

Recall that every element of y corresponds to a specific
geographical location parameterized by its latitude and longi-
tude. In vectorial representation, however, this information is
abstracted away, leaving the potential of exploiting the spatial
correlations and interdependencies between these locations
untapped. To enrich the data representation, the proposed
pipeline remodels the input and output vectors into matrices
as follows. From each yk, k ∈ [n], we construct a correspond-
ing flood inundation map Y k ∈ RH×W through a mapping
Φ : R2 → (i, j), i ∈ [H], j ∈ [W ] that converts the geo-
graphic coordinates associated with the components of y into
grid indices (i, j). This transformation Φ and the grid size
H ×W should be selected such that the existing spatial rela-
tionships among the output locations are minimally distorted.
For the current application site, the coordinate conversion
was performed by discretizing the axes of the geographical
domain. The dimensions of the formed regular mesh grid,
which underlies Y k-s, were equated for ease of processing,
and the grid size was set to H × W = 1024 × 1024 to
sustain the desired fine geographic granularity of predictions
at a reasonable computational cost while maintaining the
overall spatial structure of output locations. The mapping
conflicts due to discretization were resolved according to
the nearest neighbor principle. Subsequently, the established
indexing is leveraged to translate the binary protection
scenarios (xk)k∈[n] into hypothetical flood susceptibility
maps (Xk)k∈[n], where each Xk ∈ CH×W and C stands for

Figure 2: Schematic diagram of the proposed data-driven
framework for training performant Deep Vision-based coastal
flooding metamodels in low-data settings.

some discrete set of three predefined values that represent
categories. Here, the latter was defined as C ≜ {−1, 0, 1} and
for ∀ k ∈ [n], Xk

i,j was assigned −1 if the shoreline segment
in xk closest to the location tied to the (i, j)-th index was
marked as unprotected, 1 if protected and the rest of the cells
were filled with zeros1. In a sense, Xk-s are segmented matri-
ces in which the dy nearshore locations are classified by their
distance to unprotected parts of the coast, and the proximity
is perceived as a proxy indication of flood risk. It should,
nevertheless, be noted that these input matrices may not
necessarily reflect the actual risk or susceptibility of flooding
but are, instead, conceptual constructs devised for modeling
input protection scenarios, hence the terming “hypothetical”.

Observe that with the remodeled input-output format, the
initial regression model is effectively transformed into a prob-
lem of learning a mapping of the form X ∈ CH×W → Y ∈
RH×W , where X and Y can be visualized graphically as
grayscale (i.e., single channel) images. From a computer
vision viewpoint, this problem generally falls under the um-
brella of image-to-image translation tasks (Isola et al. 2017),
however, it can also be deemed as a variant of monocular
depth estimation from a single image (Yang et al. 2024; Fu
et al. 2024) since the predicted output is a depth map (of
floodwaters). While both of these directions have been exten-
sively researched, to the best of our knowledge, the present
problem of inferring depth information from a grayscale,
segmented image has not been explored.

Capitalizing on the new image-like representation of in-
puts and outputs, as a third step of the proposed framework,
we artificially increase the volume of training data through
image augmentation. Let D ≜ {(Xk,Y k) | k ∈ [n]}
be the dataset constructed as prescribed above. From each
existing pair (Xk,Y k) in D, m new training examples
(Xk(1),Y k), . . . , (Xk(m),Y k) are generated via the Cutout

1The choice of values in C is intended for centering the input
data around 0.



technique of (DeVries and Taylor 2017), which applies a
fixed-size zero-mask to a random location(s) within the in-
put. This method can be applied in conjunction with other
image augmentation techniques, such as rotation, flipping, or
shifting, although for the current case study, the application
of the former method alone (yet in an excessive manner) was
found to be sufficient.

As the final part of the proposed pipeline, it remains to
select the type of neural network that will power the surro-
gate model and the loss function it will learn to minimize.
Now that the problem has been transformed into an image
processing task, one has a powerful arsenal of DL techniques
at disposal, including both generative models, such as GANs
(e.g., pix2pix (Isola et al. 2017)) and Diffusion models (e.g.,
GeoWizard (Fu et al. 2024)), as well as discriminative mod-
els, such as Vision Transformers (e.g., SWIN Transformer
(Liu et al. 2021)) and CNNs. Drawing on the success of the
U-Net architecture (Ronneberger, Fischer, and Brox 2015),
we design (in Sec. 4.1) a minimalistic U-Net-like CNN model
aligned to the priorities set forth in this work and the char-
acteristics of the high-resolution flood prediction problem at
hand. Additionally, we test the proposed surrogate modeling
strategy on two existing architectures: a purely transformer-
based model and a CNN with additive attention gates. The
comparison results are reported in Sec. 5.

Turning to the selection of the loss function, a number of
alternatives can be considered, including mean squared Error
(MSE), mean absolute error (MAE), Huber loss (Huber 1992),
and its reversed variant Berhu (Owen 2007). The choice can
be informed by analyzing the distribution of water depth
values in the dataset and through experimentation. For the
current data, the best results were attained with the Huber
loss function LHuber, which sets the loss for each point in the
output to

LHuber(δ) =

{
1
2δ

2, If |δ| ≤ θ

θ|δ| − 1
2θ

2 otherwise
, (1)

where δ denotes the error between the predicted and ground
truth water depth values and θ ≥ 0 is a parameter. Recall
that by construction, the predicted inundation maps will con-
tain artificially added (background) points for which depth
estimation is irrelevant. Therefore, the latter were masked
out, and the loss was evaluated only on the valid points that
correspond to the dy locations of interest.

4.1 CASPIAN
The architecture of the introduced lightweight CNN model
CASPIAN, a detailed breakdown of which is presented in
Fig. 3, can be interpreted as a two-layered structure consist-
ing of (i) a fully convolutional encoder-decoder network with
a central bottleneck comprised of a series of ResNeXt (Xie
et al. 2017) blocks, and (ii) a cascade of consecutive pool-
ing operations and corresponding supervision blocks linked
by skip connections and stacked on top of the encoder and
decoder, respectively. In what follows, we discuss the con-
stituents of the proposed model separately, elaborating on
their structure, role, and key parameters.

The encoder part of CASPIAN consists of K successive
downsampling blocks, which progressively filter and down-

scale (by a factor of 2 each) the input image (of size H ×W )
to generate low-resolution hierarchical feature representa-
tions. To allow for efficient utilization of model parameters,
we construct these blocks in a style similar to Xception (Chol-
let 2017). Specifically, each block, except the first, is built
from depthwise convolutions (with stride 2) followed by con-
catenation (with the feature maps from the pooling path),
then pointwise (i.e., 1× 1) convolutions and a residual con-
nection around them. The initial downsampling block, which
for clarity is illustrated in a disassembled form in the topmost
left corner of Fig. 3, instead employs a regular convolution
with F filters. To save the number of parameters at higher
resolutions, we keep the number of filters F constant across
all downsampling blocks. The first block is additionally sup-
plied with the output of a stack of operations from the pooling
path, which collectively we refer to as segregated pooling.
This unit filters the non-background points in the segmented
input maps based on their class values into separate channels,
which are then concatenated and fed into a pooling layer.

The central segment of CAPSIAN, which serves as a
bridge between the encoder and decoder, is formed by M
repeated ResNeXt blocks with identical configurations and
fixed output size of H

2K
× W

2K
× F . Each block aggregates

identity mapping with a set of transformations realized
through grouped and pointwise convolutions, as illustrated
in Fig. 3. As the low-resolution feature maps produced by
the encoder undergo these transformations, the proposed
network learns more complex and increasingly global (due to
enlarging receptive field) feature representations. In addition
to the depth M , this bottleneck path is parameterized by
cardinality C and group width w, which control the size and
extent of the transformations.

The decoding module in CASPIAN, structurally mirroring
the encoder, is assembled from K blocks, which, relying on
transposed convolutions (a.k.a., deconvolutions) and point-
wise operations, learn to gradually upsample the feature maps
distilled by the bottleneck back to the original input resolu-
tion H ×W . Similar to SegNet (Badrinarayanan, Kendall,
and Cipolla 2017), instead of channeling the entire feature
maps from the encoder to the decoder through skip connec-
tions as in U-Net, the proposed network transfers only the
output of corresponding pooling layers as depicted in Fig. 3.
Additionally, these feature maps are reused for modeling
the hydrodynamic interactions among protected and unpro-
tected parts of the coast and guiding the decoding process
accordingly. In particular, we complement the first upsam-
pling block with a Modulation block constructed similarly
to Squeeze-and-Excitation (SE) unit (Hu, Shen, and Sun
2018). This block takes the propagated pooling maps as input
and produces a set of F weights, one for each channel in
the upsampled feature maps. Scaling the latter with these
weights allows the network to recalibrate and rectify the de-
coding process, selectively emphasizing some channels and
suppressing others. As illustrated in Fig. 3, in subsequent
upsampling steps, the corresponding modulation blocks can
be substituted by the output of the first block.

The output from the decoder is fed to a 1× 1 convolution
and simultaneously summed over channels. The resulting two
H×W ×1 feature maps are summed, and a ReLU activation



Figure 3: Detailed architecture of the proposed minimalistic CNN model, CASPIAN, for high-resolution coastal flood prediction
under SLR and shoreline fortifications. The input image passes through two concurrent paths: a pooling path (colored in red) and
a fully convolutional path. The modulation blocks drawn as sketches in dotted outlines are optional and could be substituted by
the output from the initial block. The operations followed by non-linear activation functions are marked with a blue border.

is applied to it to produce the predicted inundation depth
map. The effects of the summation operator (which incurs
no additional trainable parameters) are examined in Sec. 5.3.

5 Flood Prediction Under SLR and Shoreline
Armoring

5.1 Setup and Settings

Dataset: Following the proposed workflow presented in
Sec. 4, a total of 142 input protection scenarios were gener-
ated, and the corresponding inundation maps were produced
with the employed physics-based coupled hydrodynamic
model to construct the dataset D. To ensure the robustness of
the results and the reliability of the evaluation, splitting of D
into training, validation and testing sets was repeated multiple
times. Specifically, D was randomly split thrice according to
112-12-18 partitioning, resulting in three different training,
validation, and testing sets. For each split, it was ensured
there were no overlaps among the three sets. On the training
and validation sets, 19-fold data augmentation was applied
through the Cutout technique with two patches, each of size
60× 60. To test the generalizability of the developed models,
a Holdout dataset consisting of 32 handcrafted protection
scenarios was additionally constructed (see Sec. D).

Candidate Approaches: The pool of coastal flood prediction
methods selected for evaluation involves two main groups.
The first (benchmark) group includes two standard regression
techniques, namely Linear Regression and Lasso Regression
with polynomial features (referred to as Lasso with Poly.),
and two commonly employed coastal flooding metamodels
(as informed by the literature review in Sec. 2), namely Krig-
ing with PCA and Support Vector Regression (SVR). The
second group contains four end-to-end DL-based models de-
veloped under the proposed framework. Among these, three
are based on two existing networks, Attention U-net (Oktay
et al. 2018) and SWIN-Unet (Cao et al. 2022), originally
designed for medical image segmentation. To adapt to the
present settings, the segmentation heads in both networks
were replaced by a 1× 1 convolution with a ReLU activation.
Additionally, to experiment with the transfer learning tech-
nique, we substitute the encoder stack in Attention U-net with

the first 16 convolutional layers from the VGG19 network (Si-
monyan and Zisserman 2014) and consider two versions,
one with the encoder weights initialized randomly while the
other with those pre-trained on the popular ImageNet dataset,
which contains more than a million images. The latter model
is denoted as Attention U-net‡‡ to discern between these two.
Accordingly, to conform to the three-channel input format
of VGG19, for both models, the depth of input matrices was
expanded by replacing the class values with RGB codes, re-
sulting in an input size of H×W ×3. The final fourth model
in this cohort is based on the introduced lightweight CNN
network CASPIAN. To allow for an impartial inter-group
comparison, predictions produced by the models in the first
group were post-processed to replace the negative values
with zeros. As an additional reference, we employ a naive
regressor, termed Baseline Predictor, which outputs 0 if the
corresponding coastal location in the input vector was (hy-
pothetically) classified as inundation-safe or otherwise the
average peak water level across the entire dataset.
Model Configurations and Implementation Details: Set-
tings of the classical and generalized regression models
comprising the first group were determined under experi-
mentation and are listed in Table 2. Linear Regression, SVR,
Lasso with Poly., and Kriging with PCA were implemented
via Scikit-learn (Pedregosa et al. 2011) and SMT (Bouhlel
et al. 2019) Python packages. The implementations (in
Tensorflow Keras v2.1) of Attention U-net and SWIN-Unet
were borrowed and adapted from (Sha 2021). The proposed
model CASPIAN was built with Tensorflow Keras v2.1. The
hyperparameters of Attention U-net were tuned manually and
then transferred identically (except the weight initialization
in the encoder) to Attention U-net‡‡. For SWIN-Unet and
CASPIAN, the selection of hyperparameters was optimized
through the Random Search algorithm provided as part
of the Keras Tuner library (O’Malley et al. 2019) (see
Sec. C for details). For brevity, Table 2 reports only the total
number of trainable parameters of these models, whereas
the hyperparameter values are relegated to Sec. B.
Training Specifications: All the four DL models were
trained with Adam optimizer under the Huber Loss (as de-
fined in Eq. 1) function with θ = 0.5 and batch size of 2. The
adopted learning schedule, determined through trials with



Model

Test Dataset (18 samples) Holdout Dataset (32 samples)

( Lower is better ) ( Higher is better ) ( Lower is better ) ( Higher is better )

AMAE ARMSE ARTAE (%) δ > 0.5 (%) δ > 0.1 (%) R2 ACC[0] (%) AMAE ARMSE ARTAE (%) δ > 0.5 (%) δ > 0.1 (%) R2 ACC[0] (%)

Baseline Predictor 1.14
± 0.46

2.19
± 0.63

58.5
± 32.3

27
± 11.2

55.9
± 25.7

-0.11
± 0.25

57.9
± 29.9

1.33
± 0.28

2.49
± 0.28

62.2
± 19

29.9
± 7

52.6
± 12.3

-0.05
± 0.23

70.9
± 12

Linear Regression 0.20
± 0.06

0.57
± 0.15

34
± 88.2

12.5
± 2.85

19.3
± 4.01

0.88
± 0.17

41.4
± 17.1

0.2
± 0.09

0.58
± 0.21

9.18
± 2.69

12.3
± 3.61

18.6
± 4.12

0.93
± 0.05

41.8
± 15.6

Kriging with PCA 0.19
± 0.07

0.55
± 0.16

22.1
± 49.5

11.3
± 4.2

18.4
± 5.26

0.91
± 0.09

42.1
± 16.4

0.21
± 0.09

0.59
± 0.22

9.31
± 3.01

12
± 3.83

19.3
± 4.51

0.93
± 0.05

42.8
± 14.6

SVR∗∗ 0.17
± 0.08

0.69
± 0.26

19.9
± 42.1

4.47
± 1.68

6.27
± 2.76

0.87
± 0.08

21.3
± 8.1

0.17
± 0.12

0.7
± 0.33

7.65
± 3.94

4.44
± 2.61

6.13
± 3.01

0.9
± 0.1

19.2
± 6.84

Lasso with Poly. 0.14
± 0.05

0.42
± 0.15

22.5
± 55.6

5.45
± 2.65

16.3
± 5.16

0.95
± 0.03

10.8
± 3.82

0.16
± 0.08

0.46
± 0.22

7.09
± 2.42

6.72
± 3.07

14.3
± 4.58

0.95
± 0.05

10.8
± 4.6

Attention U-net 0.11
± 0.07

0.64
± 0.26

5.56
± 5.73

1.9
± 1.35

4.04
± 2.4

0.89
± 0.08

97.3
± 3.08

0.13
± 0.1

0.69
± 0.32

5.38
± 3.59

2.29
± 2.08

4.71
± 2.79

0.9
± 0.08

98.8
± 1.49

Attention U-net‡‡ 0.10
± 0.07

0.64
± 0.26

5.41
± 5.73

1.92
± 1.37

3.95
± 2.38

0.89
± 0.08

97.2
± 3.12

0.12
± 0.1

0.69
± 0.32

5.3
± 3.57

2.28
± 2.08

4.52
± 2.84

0.9
± 0.08

98.8
± 1.51

SWIN-Unet 0.07
± 0.04

0.42
± 0.18

3.21
± 2.15

1.37
± 0.89

7.19
± 3.69

0.95
± 0.03

97.3
± 2.44

0.08
± 0.06

0.45
± 0.21

3.32
± 2.05

1.70
± 1.61

7.58
± 3.84

0.95
± 0.04

98.1
± 3.57

CASPIAN 0.06
± 0.03

0.46
± 0.18

3.12
± 1.89

1.06
± 0.67

3.14
± 1.65

0.94
± 0.03

98.5
± 1.84

0.06
± 0.04

0.45
± 0.19

2.80
± 1.46

1.01
± 0.87

3.99
± 2.67

0.96
± 0.03

99.1
± 1.10

Table 1: Quantitative comparison of the candidate coastal flood prediction methods. The models developed with the proposed
Deep Visual Learning framework are highlighted in green. The results for each metric are reported as the mean and standard
deviation across the samples over the three data splits. The top scores are highlighted in blue, and the runner-ups are in orange.
The superscript ∗∗ denotes an ensemble of individual models, each trained for one specific coastal location.

several alternatives, was set to start with a gradual warm-up
that increases the learning rate from 0 to LR linearly for 20
epochs, followed by 200 epochs of the main training session
wherein the learning rate was reduced (×0.85) whenever the
validation loss plateaued (patience = 10). During the main
training, early stopping was applied if no improvement in
the validation loss was recorded for 40 consecutive epochs.
LR was set to 1.5 · 10−4 for Attention U-Net and Attention
U-net‡‡, to 1.8 · 10−4 for SWIN-Unet, and to 8 · 10−4 for
CASPIAN. All the models were trained and evaluated on a
desktop machine with an Intel Core i9 3.00 GHz CPU, 64
GB of RAM and a single NVIDIA RTX 4090 GPU.

Evaluation Metrics: As emphasized in (Al Kajbaf and Bensi
2020), in most prior works studying coastal flood prediction,
the performance of developed coastal metamodels was as-
sessed considering only a few basic aggregate metrics, such
as Root Mean Squared Error (RMSE), Mean Absolute Er-
ror (MAE) or Coefficient of Determination (R2), which may
not adequately reflect the actual quality of predictions. To
provide a more comprehensive evaluation, we consider 6 dif-
ferent metrics, including both error and accuracy measures,
formally defined as follows:

ARTAE ≜
1

N

N∑
k=1

∥yk − ŷk∥1
∥yk∥1

, R2 ≜
1

N

N∑
k=1

(1−Ψ)

ARMSE ≜
1

N

N∑
k=1

√√√√ dy∑
i=1

(yk
i − ŷk

i )
2

dy
, δ > ∆ ≜

1

N

N∑
k=1

∣∣S∆
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dy

,

AMAE ≜
1

N

N∑
k=1

dy∑
i=1

|yk
i − ŷk

i |
dy

, ACC[0] ≜
1

N

N∑
k=1

∣∣Ok ∪ Ôk

∣∣∣∣Ok

∣∣
where N is the number of evaluated samples; y and ŷ
correspond to the ground truth and predicted peak water
levels of the dy locations of interest, respectively; ȳk ≜

Model Input size Output size Training
time (hr.)

Inference
time (ms.)

Parameters
(# or settings)

Baseline Predictor 12066 12066 ≪ 0.001 23 1

Linear Regression 17 12066 ≪ 0.001 ≈ 1 17

Kriging with PCA 17 12066 ≈ 0.001 ≈ 8.5 Reg. f. : linear
Cor. f. : sq. exp.

SVR∗∗ 17 1 · (12066) ≈ 0.001 ≈ 3770 Kernel : linear
C = 5, ϵ = 0.05

Lasso with Poly. 154 12066 ≈ 0.029 ≈ 0.49 Int. only: True
Degree : 2

Attention U-net H ×W × 3 H ×W × 1 ≈ 7.5 ≈ 25 ≈ 12 Mil.
Attention U-net ‡‡ H ×W × 3 H ×W × 1 ≈ 8.6 ≈ 25 ≈ 12 Mil.
SWIN-Unet H ×W × 1 H ×W × 1 ≈ 2 ≈ 50 ≈ 8.3 Mil.
CASPIAN H ×W × 1 H ×W × 1 ≈ 3.5 ≈ 25 ≈ 0.36 Mil.

Table 2: Addendum to Table 1.

1 · 1
dy

∑dy

i=1 y
k
i denotes the mean vector of actual peak wa-

ter level values for the k-th sample; ∆ is an error thresh-
old (in meters); S∆ ≜ {i ∈ [dy] : |yki − ŷki | > ∆};

Ψ ≜
∥yk − ŷk∥22
∥yk − ȳk∥22

; Ok ≜ {i ∈ [dy] : yki = 0};

Ôk ≜ {i ∈ [dy] : ŷki = 0}. Here, ARTAE, ARMSE, and
AMAE stand for average relative total absolute error, average
RMSE, and average MAE, respectively; δ > ∆ quantifies the
fraction of cases where the error in predicted floodwater lev-
els exceeds the specified threshold ∆ – an important metric
for assessing models’ reliability and gaining a more nuanced
understanding of their performance; and ACC[0] measures
the zero detection rate (that is, models’ accuracy of detecting
non-inundated locations).

5.2 Results and Comparison
Table 1 summarizes the candidate models’ performance on
the Test and Holdout datasets averaged over the three data
splits. Notable observations from the first group of bench-
mark models are as follows. The two-stage Kriging with PCA
approach, commonly employed in prior works, slightly im-



proves upon Linear Regression by achieving 22.1% ARTAE,
but δ errors are comparable, indicating a similar prediction
quality. On the other hand, we observe significant improve-
ment with Lasso with Poly, which reached the highest ARMSE
of 0.42% and R2 = 0.95 across all the models while achiev-
ing a δ > 0.5 error of 5-7%, about half of the error produced
by Kriging with PCA. This signifies that the incorporation
of engineered input features that model the interactions be-
tween the protected and unprotected precincts can improve
the prediction quality. Among the first group of models, SVR
achieved the lowest δ errors, which indicates a higher quality
of predictions, yet ACC[0] is extremely low at around 20%.
However, it should be noted that in the case of SVR, a sepa-
rate model has to be trained for every output coastal location
independently, which raises potential scalability issues.

The DL models trained with the proposed framework,
comprising the second group, significantly outperformed the
above benchmark models in terms of AMAE (by a factor of 2
on average), ARTAE (by a factor of 2-5) and δ errors (by a fac-
tor of 2-5), and especially for ACC[0] (more than two-fold).
The version of Attention U-net with the pre-trained weights
achieved only modest improvements over the version trained
from scratch, specifically a marginal improvement of 0.1% of
ARTAE and 0.01% of δ > 0.5 error. This result could possibly
be attributed to the stark difference in image modalities and
sizes between the current dataset and ImageNet, aligning with
the findings and conclusions drawn in (Zhuang et al. 2021).
The two best-performing candidate models were SWIN-Unet
and CASPIAN, the former a close runner-up to the latter for
the majority of the metrics. Notably, CASPIAN attained the
highest scores for all metrics in the Holdout dataset while
requiring only a fraction of SWIN-Unet’s model’s size. As
reported in Table 2, CASPIAN achieved δ > 0.5 error of only
1% on both datasets, and the performance with respect to the
other metrics is consistent on both datasets, demonstrating
the generalizability of the introduced CNN model.

5.3 Ablation Experiments
To supplement the evaluation results reported in Sec. 5.2,
this section ablates the key architectural components
introduced in CASPIAN. In particular, we remove/truncate
the blocks/modules individually in four steps, resulting
in the following versions: (i) CASPIAN without the final
channel-wise summation, abbreviated as CASPIANB, (ii)
CASPIAN with the depth of the central bottleneck reduced
to 2 (i.e., M = 2), denoted as CASPIANΓ, (iii) CASPIAN
with the modulation block removed, denoted as CASPIANZ,
(iiii) CASPIAN with the pooling path completely eliminated,
referred to as CASPIANΩ.

The results of ablation experiments are tabulated in Table 3.
CASPIANB and CASPIANΓ achieved similar results on the
test dataset compared to CASPIAN, yet δ > 0.1 error of the
produced predictions on the holdout dataset nearly doubled,
indicating poorer generalizability. This observation corrobo-
rates the importance of the proposed deep central bottleneck
and the final summation operator. In the case of CASPIANZ
and CASPIANΩ, a significant drop in performance was ob-
served on both datasets approaching that of Attention U-Net.
This outcome can be expected since, after the elimination

of the pooling path, the architecture of the latter two more
closely resembles that of Attention U-Net.

Model Test Dataset (18 samples) Holdout Dataset (32 samples) # of
parameters

AMAE ARMSE δ > 0.1 (%) AMAE ARMSE δ > 0.1 (%)

CASPIANB
0.06

± 0.03
0.44

± 0.19
3.61

± 2.12
0.07

± 0.06
0.45

± 0.20
6.27

± 10.5
= CASPIAN

CASPIANΓ
0.06

± 0.04
0.45

± 0.19
5.62

± 4.91
0.07

± 0.05
0.47

± 0.20
5.59

± 4.41
≈ 0.215 Mil.

CASPIANZ
0.10

± 0.07
0.58

± 0.30
7.04

± 3.40
0.11

± 0.09
0.62

± 0.29
7.46

± 2.81
≈ 0.344 Mil.

CASPIANΩ
0.10

± 0.07
0.55

± 0.31
6.21

± 2.97
0.11

± 0.09
0.62

± 0.29
6.93

± 2.81
≈ 0.341 Mil.

Table 3: Results of the ablation studies.

6 Concluding Remarks
In this paper, we presented a data-driven surrogate modeling
framework for developing accurate and reliable coastal flood-
ing metamodels powered by vision-based DL techniques.
The proposed framework was tested on three different DL
architectures, including a lightweight CNN model CASPIAN
introduced in this work. The developed models were shown
to significantly outperform existing geostatistical methods
and standard regression techniques commonly employed in
prior studies. The best-performing model, CASPIAN, closely
and consistently emulated the results of the high-fidelity hy-
drodynamic simulator, on average achieving an AMAE error
of 0.06 and δ > 0.5 error of only around 1% on both Test
and Holdout datasets.

One limitation of the developed coastal metamodels is
that they are currently domain-specific since the training was
performed considering one specific shoreline, SLR scenario,
and fixed set of wind parameters. However, without major
modifications to the proposed framework, one can extend the
proposed framework to account for different coastal areas,
for example, by including other geographical data such as
local slopes, and hydraulic connectivities in the input maps.
Another possible extension would be to expand the predictive
scope and, in addition to peak water levels, also estimate the
maximum velocities of floodwaters, a key prediction needed
for coastal damage assessment.
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A Coastal Area and its Hydrodynamic Model
The geographical area selected for the application of the proposed surrogate modeling framework stretches along the coast of
Abu Dhabi, which is the capital of the United Arab Emirates (UAE) situated inside the Persian Gulf. UAE’s coastline features a
low-lying and shallow-sloping (about 35 cm per km) topography (Melville-Rea et al. 2021). Over 85% of the population and
more than 90% of the local infrastructure of the UAE is within a few meters of the present-day sea level (Al Ahbabi 2017).
Notably, Abu Dhabi is comprised of a system of coastal mangrove islands, coral reefs and artificial islands, and 50% of its area
lies only within 1 m above sea level (Hereher 2020; Subraelu et al. 2022). Considering that possible SLR estimates are on the
order of 1.0 to 1.5 m by the end of 2100, most of the built and natural mangrove ecosystem of Abu Dhabi, along with its coastal
communities, will potentially be exposed to flood hazards and subsequent damages.

Given the complex structure of Abu Dhabi’s coastline, it is necessary to consider the protection of different sections. The
partitioning scheme chosen for the purposes of this study was informed by the precincts defined in the 2030 Urban Structure
Framework Plan of Abu Dhabi (Abu Dhabi Urban Planning Council 2007). For further refinement of partitions, we divided
the main island of Abu Dhabi, grouped other islands, and delineated the boundaries between some precincts, which yielded 17
individual coastal segments that constitute the candidate sites for installation of engineered fortifications, as depicted in Fig. 1.

For simulating the tidal dynamics of the considered region, we utilized Delft3D, which is a hydrodynamic model that solves
the time-dependent Reynolds Averaged Navier Stokes differential equations. That is, Delft3D is a physics-based numerical model
that considers the time-varying forces exerted on a water body (such as the entire Persian Gulf) due to hydrostatic pressures (such
as SLR), tidal forcing, wind and storm stresses, bottom (seabed) friction, and river inflows over a finite-element computational
grid (up to 30 m in horizontal resolution) spread over variable bathymetry. For any point in this grid, it can provide time series
outputs, with 30-minute intervals, of water levels and local water circulation velocities throughout the specified simulation period.
Importantly, Delft3D can handle computational grid cells that alternate between dry and wet states (Barnard et al. 2014).

The tidal model was validated by running the Delft3D simulator over a 3-month period between 1 January and 31 March
2017 (without wind forcing) and computing the root mean squared error between the model outputs of hourly water levels
at 194 locations throughout the gulf and hourly tidal gauge water level data obtained from the TPXO8 Ocean Atlas for the
same period (https://www.tpxo.net/global/tpxo8-atlas. Also see (Egbert and Erofeeva 2002)). The model was calibrated by
adjusting the bottom Manning’s roughness coefficient for the entire gulf domain from 0.015 to 0.030. The lowest overall error
was attained under the coefficient of 0.02, which was taken as the calibrated roughness value for the gulf model going forward.
Fig. 4 demonstrates a typical fit between water level values (relative to the mean sea level) outputted by the model and the tidal
gauge data at two representative locations near the UAE shore. Further details concerning the employed hydrodynamic model
and its validation can be found in (authors 2022).

To account for wind-induced wave activity in the vicinity of Abu Dhabi’s coast, the validated Delft3D model was rerun
with wind forcing from the ERA5 database, and the results were fed to an additional spectral wave model, Simulating Waves
Nearshore (Delft University of Technology 2022), which allows capturing wind-wave generation, wave diffraction, amplification
and refraction of water surface waves as they approach the shoreline. The SWAN model was applied at a scale of about 100 km

Figure 4: Comparison of the simulated tidal model’s output and TPXO8 Atlas’ time-series data on water levels from 10 Feb to
10 March 2017 at Mina Rashid (on top) and Zubbayah Channel (on bottom). The units of vertical axes are in meters relative to
the mean sea level.



along the shoreline to about 50 km offshore under the same forcing from the ERA5 database. Finally, along the interface of the
waves with the coastline, the SWAN-computed significant wave heights and the local shoreline slope were used to compute the
run-up elevations along the coastline where the waves hit the shore.

With the above coupled hydrodynamic model in place, illustrated in Fig. 5, one can run a reference case with no shoreline
armoring (except those already existing in Abu Dhabi) to evaluate the maximum extent of flooding due to SLR and storms. For
every protection scenario of the shoreline, the raw output of the model will include 3 months worth of hourly water levels for
more than 400, 000 grid point locations throughout the Persian Gulf. To filter the nearshore inland locations of interest, based on
which the effectiveness of protection scenarios can be appraised, the following two steps were taken: (i) the points lying outside
the urban region of Abu Dhabi were excluded; (ii) the inland cells that never experienced flooding even in the case of no coastal
protection (i.e., are not hydraulically connected to the Gulf or bear no correlation with the input) were removed. This resulted in
the final set of 12066 locations along the coastline, which appear in Fig. 1.

Figure 5: Schematic of hydrodynamic model elements. Green elements denote input parameters; Yellow are the constituent
sub-models; Blue are model outputs. Running one cycle of the above model will generate an hourly update of the water depth
throughout the UAE coastline.

B Hyperparameters of the Trained DL Models

Attention U-net and Attention U-net‡‡:
• input_size = (1024, 1024, 3)
• filter_num = [32, 64, 128, 256] (number of filters for each down- and up-scaling level)
• stack_num_down = 2 (number of layers per downsampling level/block)
• stack_num_up = 2 (number of layers (after concatenation) per upsampling level/block
• activation = ’ReLU’
• atten_activation =’ReLU’
• output_activation =’ReLU’
• batch_norm = False



• backbone = ’VGG19’ (the backbone model name)
• encoder_weights = ’random’ (for Attention U-net) and ’imagenet’ (for Attention U-net‡‡)
• freeze_backbone = False

SWIN-Unet:
• filter_num_begin = 64 (number of channels in the first downsampling block)
• depth = 4 (the depth of Swin U-net, 4 means 3 down/upsampling levels and a bottom level)
• stack_num_down = 2 (number of Swin Transformers per downsampling level)
• stack_num_up = 2 (number of Swin Transformers per upsampling level)
• patch_size = 8
• att_heads = 4 (number of attention heads per down/upsampling level)
• w_size = 4 (the size of attention window per down/upsampling level)
• mlp_ratio = 4 (ratio of MLP hidden dimension to embedding dimension)

CASPIAN:
• input_shape = (1024, 1024, 1)
• F = 72
• K = 4
• C = 34
• M = 8
• modulation_level = 1
• p = 4
• r = 0.85 × F
• activation = ’tanh’
• init = "glorot_normal"

C Details of the Hyperparameter Tuning
The hyerparameters of the trained DL models reported in the previous section were selected as follows. Since Attention U-net and
Attention U-net‡‡ were implemented with the VGG19 backbone, we tuned the available remaining hyperparameters (learning
rate and activations) manually. For SWIN-Unet and CASPIAN, the selection of hyperparameters was optimized through the
Random Search algorithm provided as part of the Keras Tuner library. The considered search space of hyperparameter values for
both models is listed hereunder.

Hyperparameter Search Space for CASPIAN:
• F : {min = 64,max = 128, step = 4}
• K : {min = 3,max = 6, step = 1}
• C : {min = 12,max = 64, step = 4}
• M : {min = 4,max = 12, step = 2}
• modulation_level : {min = 1,max = 3, step = 1}
• p : {min = 2,max = 8, step = 2}
• r : {min = 0.5,max = 0.95, sampling = linear}· F
• activation : [’relu’, ’tanh’, ’swish’]
• learning_rate : {min = 5e− 5,max = 5e− 3, sampling = log}

Hyperparameter Search Space for SWIN-Unet:
• filter_num_begin : {min = 64,max = 160, step = 16}
• depth : {min = 3,max = 4, step = 1}
• stack_num_(up down) : {min = 1,max = 2, step = 1}
• patch_size : [4, 8, 16]
• att_heads : {min = 2,max = 4, step = 2}
• dropout : [0.0, 0.05, 0.1, 0.2]
• learning_rate : {min = 1e− 5,max = 5e− 4, sampling = log}

D Holdout Dataset



Table 4: Protection scenarios considered in the Holdout dataset.

Holdout protection scenarios (32 in total)
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