
Towards Seamless Management of AI Models in High-Performance Computing

Sixing Yu1, Murali Emani2, Chunhua Liao3, Pei-Hung Lin3, Xipeng Shen4, Ali Jannesari1

1Iowa State University, Ames, IA
2 Argonne National Laboratory, Lemont, IL

3 Lawrence Livermore National Laboratory, Livermore, CA
4 North Carolina State University, Raleigh, NC

{yusx, jannesar}@iastate.edu, {liao6, lin32}@llnl.gov, memani@anl.gov, xshen5@ncsu.edu

Abstract

With the increasing prevalence of artificial intelligence (AI)
in diverse science/engineering communities, AI models
emerge in an unprecedented scale among various domains.
However, given the complexity and diversity in the software
and hardware environments, reusing AI artefacts (models and
datasets) is extremely challenging, specially with AI-driven
science applications. Building an ecosystem to efficiently run
and reuse AI applications/datasets at scale becomes increas-
ingly important for diverse science and engineering and high
performance computing (HPC) community. In this paper, we
innovate over an HPC-AI ecosystem – HPCFair, which en-
ables the Findable, Accessible, Interoperable, and Repro-
ducible (FAIR) principles. HPCFair enables collection of AI
models/datasets allowing users to download/upload AI arti-
facts with authentications. Most importantly, our proposed
framework provides user friendly API for users to easily run
inference jobs and customize AI artifacts to their tasks as
needed. Our results shows that, with HPCFair API, users ir-
respective of technical expertise in AI, can easily leverage AI
artifacts to their tasks with minimal efforts.

Introduction
With the outstanding performance achieved by artificial in-
telligence (AI) and machine learning (ML), AI artifacts (AI
models and datasets) being increasingly adopted to diverse
science and engineering domains, such as materials discov-
ery, ecology, cosmology, biology and wildlife conservation.
However, given the complexity and diversity in the soft-
ware and hardware environments, reusing AI artifacts is ex-
tremely challenging, specially with AI-driven science and
engineering applications. Additionally, AI artifacts devel-
oped in various scientific domains makes it extremely chal-
lenging for scientists to fetch, reuse, and reproduce. Intro-
ducing frameworks to reasonably access, reproduce and run
those AI applications at scale for diverse science and engi-
neering communities, becomes crucial to accelerate science
with high-performance computing (HPC).

We first list the key challenges for diverse scientific com-
munities to apply AI artifacts, which need to be addressed
by such AI artifact management framework. First, AI arti-
facts rely on complex software and hardware dependencies.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Second, the dependencies vary across AI artifacts. For any
given AI artifacts, we need to configure running environ-
ments for it. Third, AI artifacts supported by different back-
end implementations (e.g., C++ and Python) usually have
interoperability challenges. Forth, applying AI artifacts re-
quires diverse domain scientists’ significant programming
skills beyond science. Fifth, it is hard to find, access, inter-
operate, and reproduce a target AI model available in public
repositories. Sixth, It is hard for scientists to find a target
model that matches their needs perfectly, while customiz-
ing AI artifacts need extraordinary efforts. e.g, hundreds of
hyper-parameters for tuning Lastly, lack of benchmark and
standardization processes. The experimental results are hard
to reproduce on the user’s customized tasks.

Although the existing HPC-AI artifact management
ecosystem (Wolf et al. 2019; Chard et al. 2019) signifi-
cantly simplifies the threshold for applying AI artifacts, nev-
ertheless, they are dedicated to serving computer science
and software engineering domain scientists, which fails to
provide solutions for diverse scientific communities. Such
challenges have barely been addressed by existing HPC-AI
ecosystems.

In this paper, we propose novel techniques to HPCFair
(Verma et al. 2021; Nan et al. 2021) – an HPC-AI model and
data management system, which enables AI artifacts Find-
able, Accessible, Interoperable, and Reproducible (FAIR
principles) as well as provides user-friendly interfaces/APIs
for diverse domain scientists adopting AI artifacts to their
in-demand research tasks. Specifically, HPCFair container-
ized AI artifacts, where all the executing dependencies for
given artifacts are built in an associate virtual machine inde-
pendently. Therefore, the proposed work provides users with
a friendly executing environment and bypasses the labor-
costly environment established on both hardware and soft-
ware. Besides that, we designed an HPC ontology to effi-
ciently implement FAIR principles, which enables scientists
to easily share and fetch target AI artifacts.

We summarised our contributions as follows:

• We proposed a novel model knowledge management sys-
tem.

• Our proposed solution significantly simplified AI model
deployment for domain scientists.

• Provide user friendly APIs for scientists customize AI

products to their demands.

Background
Since AI artifacts popped up on a giant scale, extensive ef-
forts have been devoted to developing efficient AI artifact
management tools. In this section, we summarized the State-
of-The-Art (SoTA) AI artifacts tools.

Container Platform
A recent popular trend to improve the reproducibility of
AI artifacts is containerization, which enables developers
to pack the source code as well as running dependencies
and provides an operation system-independent virtual envi-
ronment for executing target AI artifacts. SoTA container-
ized platform such as Docker (Merkel 2014) and Singu-
larity (Kurtzer, Sochat, and Bauer 2017) enables develop-
ers to integrate their codes and dependencies into contain-
ers—standardized executable components, and hence, ex-
ecutable in any operating system. Nowadays, great efforts
are devoted to specializing containerized machine learn-
ing (ML) models and datasets, such as MLCube (Kahng,
Fang, and Chau 2016). However, existing containerized plat-
forms are targets to developers publish their works and re-
quire expert knowledge for configuration. It is hard for di-
verse domain scientists to specialize in it.

AI artifacts Hub
AI artifacts Hubs gather collections of AI models and
datasets and provide a user-friendly interface to search and
reproduce AI artifacts. For instance, Data and Learning Hub
for Science (DLHub) (Chard et al. 2019), a cloud-hosted
learning system, enables developers to publish their models
with flexible access control. Collective Knowledge Frame-
work (cKnowledge) (Fursin 2021) constructed a database of
AI components as well as provides APIs and terminal in-
terfaces to efficiently manage research projects for devel-
opers. Hugging Face (Wolf et al. 2019) offers NLP models
and datasets, such as Transformer models, as multi-platform
supportive open-source libraries that help users download,
infer, optimize, and reuse AI models. Tensorflow Hub and
PyTorch Hub enable developers to upload their customized
model architecture and pre-trained weights in the cloud
database and provide APIs to share public models. However,
the AI components shared in PyTorch and Tensorflow Hub
have limited their backend which hinders switching the pro-
gramming frameworks as needed.

Approach
In this section, we will present how HPCFair lowered the
threshold for diverse scientific communities adopt AI to their
research. In essence, HPCFair introduced four components
to provide scientists with a user-friendly interface. First, we
proposed object converter components to enable program-
ming framework-agnostic implementation. Then, we intro-
duced AI artifact containerized components, which allow AI
artifacts to run independently of the operating system. To al-
low scientists to run AI artifacts effortlessly even without
a programming background, we designed a straightforward

user query rule and established robust user query processing
components. Additionally, to enable AI artifacts Findable,
Accessible, Interoperable, and Reproducible (FAIR) princi-
ples, we designed an HPC ontology to run our proposed plat-
form in HPC clusters.

Enable AI artifacts Collaboration

AI artifacts emerge on an unprecedented scale and have been
developed by different underlying systems, such as different
languages (Python, C++) and frameworks (Scikt-learn, Py-
Torch, TensorFlow), and AI artifacts in different frameworks
are not transferable. Hence, it raises significant challenges
for users inter-operate AI artifacts with distinct underlying
backends. For instance, an AI model implemented in C++ is
hard to integrate with an AI dataset in Python implementa-
tion. Domain scientists tend to be challenged to incorporate
AI artifacts in their applications, where they have to switch
back and forth between different developing backends.

Thanks for recent efforts in ONNX (Bai et al. 2019) (a
community AI project for building general AI model for-
mats), which use extensible computation graph models to
represent AI models built with different frameworks. Intu-
itively, with its framework and platform-independent com-
putational graph representation, AI models developed with
different frameworks can be transferred to a general format,
and hence, support interoperability between frameworks.
However, such a great contribution has barely been used
by existing HPC-AI tools. Therefore as shown in Figure 1
AI artifacts converter, HPCFair developed an online running
process that any customized AI model that has been shared,
uploaded, and pushed to the HPCFair database would be au-
tomatically transferred to ONNX.

Containerized AI artifacts

Since our target users are among different scientific domains
and have various hardware environments, we aim to provide
solutions for deploying AI artifacts among different plat-
forms. The benefit of an AI model container image can be
briefly summarized as follow: first, once the container image
is built, it will provide a virtual executing environment for
the associate AI model that is independent of local devices.
Second, the container image can generalize the model to dif-
ferent software/hardware systems, and save great efforts in
environment configurations. Lastly, the container image can
be executed easily.

Hence, to improve and reproduce experiments with AI ar-
tifacts we aim to collect experiments run-time system and
supporting metadata configuration information. Specifically,
we leverage MLCube (Kahng, Fang, and Chau 2016) con-
tainer storing essential runtime experimental configurations
and states of AI models. A containerized object is rep-
resented by a configuration file, which contains informa-
tion on the object’s runtime supporting libraries and hyper-
parameters. Besides that, uniqueness checks are been per-
formed to guarantee there is no duplicate uploading in the
underlying database.

Scripts to
access
public

dataset

Front-End

AI/ML
Docker
Images

Individual
Utilities/

Supporting
Libraries

Cached
Models' Imgs

Tags
Based
Search

Load
Models

(MLCubes)

Load
Dataset

Store
Models/
Dataset/

Supporting
Library

YAML
based

config files

IF MODEL
OR LIB:
Create a
container

img
ELSE:

store as
object

Data
preprocessign

scripts
versioned

Already
exists?

Notify User of
conflicts

Yes

No

Cached Datset
scripts

Private
Dataset

Database

User
Authenti-

cation

Public
or Pvt?

Pvt

Data
preprocessign

scripts
versioned

Public

Public
or Pvt?

Pvt

Public

HPC Ontology

Workflow Synthesizer

Model
Inference

AI objects
converter

AI Objects
(Models/Dataset)

Knowledge
Transfer/

Model
Optimize

ONNX

Programming-free
configuration
processing

components

YAML
based

query files

Figure 1: Designed Workflow for HPCFair.

User-Friendly Query Rule Design
As shown in Figure 1, to provide a friendly interactive in-
terface for users, every query made by users would initial-
ize the proposed components. Users may provide configura-
tion files to specify tasks and parameters as needed for their
tasks. In HPCFair, we designed four groups of configuration
arguments to conduct main tasks (store models/datasets, tag-
based search, model inference, knowledge transfer/model
optimization, load models, and load dataset) provided by
HPCFair APIs. Listing 1 shows the example configuration
for model conversion. First configuration arguments group
is general arguments, where a user specifies which task to
perform, and HPCFair will initialize the corresponding com-
ponents (As shown in Listing 1 lines 1-3). Then, user pro-
vides the device arguments (Listing 1 lines 5-9), user specify
local device information. Next group of configuration argu-
ments is the task arguments (Listing 1 lines 12-16), such as
input, working path, etc. Lastly, the output arguments spec-
ify where HPCFair export the output (Listing 1 lines 18-19).

Designed Workflow for FAIR Principles
Our ultimate goal is to provide scientists with a friendly
platform to fetch, share, and apply AI artifacts. As shown
in Figure 1, we designed an efficient online workflow for
HPCFair (Liao et al. 2021). First, to assist scientists in effi-
ciently finding target AI artifacts (Findable), HPCFair reg-
istered and indexed descriptive metadata with correspond-
ing AI artifacts together as a searchable resource. The meta-
data contains rich descriptive information about associated
AI artifacts and is assigned a globally unique and persistent
identifier, which significantly enhances searchability. Sec-
ond, users can easily access AI artifacts in HPCFair database
through the designed communication protocol (Accessible).
Such communication protocol enables users to share or dis-
cover their target AI artifacts efficiently. Additionally, HPC-
Fair also provides authorized credentials for users securely
access AI artifacts wherever necessary. To qualify AI arti-
facts to interoperate among various AI frameworks (Inter-

operable) at the application level, the object conversion pro-
cess on HPCFair server continuously transforms communi-
cated AI models to ONNX format, equipping application
users to transform models from one format to another as
needed. Lastly, the scientific community oftentimes inter-
acts among researchers to share and reuse crucial compo-
nents. HPCFair provides metadata with detailed provenance
to reuse the components to build an AI pipeline by plugging
the data artifacts (Reproducible). The loosely coupled nature
of the stored data enables efficient development.

Evaluation
In this section, we conduct comprehensive evaluations for
HPCFair under different practical scenarios and use demos
and examples to show the ease of scientists applying AI ar-
tifacts by using HPCFair.

AI artifacts collaborations
As AI artifacts are often implemented by diverse frame-
works, enabling collaboration among AI artifacts becomes
challenging. HPCFair introduces object converter compo-
nents and provides APIs for a user to allow AI artifacts col-
laborations. To assess the HPCFair with a general use case,
we experiment with interfacing two AI models implemented
with PyTorch and TensorFlow respectively. We consider a
popular encoder-decoder model structure, given an encoder
implemented on PyTorch and a decoder developed by Ten-
sorFlow, our goal is to construct an AI model from the given
encoder and decoder.

To achieve model collaboration, we first leverage HPC-
Fair APIs to convert target AI artifacts to ONNX formats,
then use HPCFair built-in inference API to run the model. To
leverage functional APIs built-in HPCFair, the user provides
a straightforward configuration file. In the model collabora-
tion task, we first configure the model conversion task con-
figuration file, as shown in Listing 1. As shown in the con-
figuration file, the user specifies the essential AI artifacts in-
formation, such as the backend framework, and checkpoint

directory. The output file would be saved into the path user
defined under out args.

1 general_args:
2 task: "conversion"
3 backend: ["pt","tf"]
4
5 device_args:
6 worker_num: 4
7 device: "cpu"
8 gpu_mapping_file: ’’
9 gpu_mapping_key: ’’

10
11 model_args:
12 model_name: ["encoder","decoder"]
13 model_file: ["./ckpt/encoder.ckpt",

"./ckpt/decoder.ckpt"]
14 onnx_version: 10
15
16 out_args:
17 export_file: ["encoder.onnx","decoder.

onnx"]

Listing 1: Configuration for model conversion
After target model been converted to uniformed ONNX

file, next step is to run the model. Similarly, HPCFair pro-
vides high-level APIs for users run AI artifacts without pro-
gramming expertise knowledge. Listing 2 shows the infer-
ence configuration file.

1 general_args:
2 task: "inference"
3 tag: "collaboration"
4 backend: "onnx"
5
6 device_args:
7 worker_num: 4
8 device: "cpu"
9 gpu_mapping_file: ’’

10 gpu_mapping_key: ’’
11
12 task_args:
13 model_name: ["encoder","decoder"]
14 model_file: ["encoder.onnx", "decoder.

onnx"]
15 onnx_version: 10
16 input: "input.txt"
17
18 out_args:
19 export_file: "out.txt"

Listing 2: Configuration for model collaboration for
inference

The most exciting part of HPCFair is that it is fairly simple
to call the APIs, which usually with one-line codes to finish
a task. Listing 3 shows we call HPCFair-provided Python
APIs to finish model collaboration tasks based on the con-
figuration files. Model collaboration is a combined task with
model conversion and model inference tasks. In the first line,
we import the HPCFair python APIs. then in the main func-
tion (lines 3-6), we first create an API object (line 4). Then
perform model conversion (line 5). Lastly, model collabora-
tion (line 6). Taking the advantage of the robust high-level
APIs, we finish the complex model collaboration task in 3
lines codes.

1 from hpcfair import modelAPI

2
3 if __name__ == ’__main__’:
4 api = modelAPI()
5 api.conversion(path_to_config)
6 api.collaborate(path_to_config)
7 api.container(path_to_config)

Listing 3: Call HPCFair APIs

Inference AI artifacts via HPCFair

In AI artefacts inference task, users provides an input, HPC-
Fair run the target AI artefacts on that input and return
output. As mentioned before, to support multi-framework
and underlying language, HPCFair automatically transfer AI
artefacts to onnx, hence, greatly simplified inference pro-
cess. Inside HPCFair, we build a base container for running
onnx models. The inference examples as shown in Listing 2
and Listing 3.

Run AI project via HPCFair

Different from inference AI artefatcs, which dealing with
given inputs, an AI projects may involves data processing,
training, fine-tuning, transferring on scaled datasets. HPC-
Fair built a running virtual environments for AI projects by
containerization. To run target AI model fetched from HPC-
Fair, users simply provide a configuration file (As shown in
Listing 4). Running a AI artefacts rely on diverse and com-
plex environment dependencies, running AI models requires
considerable efforts to satisfy both hardware and software
requirements. HPCFair provides high-level APIs for users
build AI artefacts to their task in one line codes (Line 7 in
Listing 3).

1 general_args:
2 task: "container"
3 backend: "mlcube"
4
5 device_args:
6 device: ’gpu’
7
8 task_args:
9 work_dir: "project_dir"

10 build_file: "path_to_build_file"
11 build_tag: "image_name"
12 volume: "/app"
13 out_args:
14 export_file: "out.txt"

Listing 4: Configuration for running AI project

Conclusion
In conclusion, we proposed a novel model knowledge man-
agement system - HPCFair, which enables AI artefacts Find-
able, Accessible, Interoperable, and Reproducible (FAIR)
principles. HPCFair provides users high-level APIs and
friendly interactive interface to fetch, reproduce and retrieve
AI artefacts. Most importantly, HPCFair greatly saves the
labor cost for scientists to customize AI artefacts to their
tasks.

Acknowledgment
This research was funded in part by and used resources at the
Argonne Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract
DE-AC02-06CH11357.

References
Bai, J.; Lu, F.; Zhang, K.; et al. 2019. ONNX: Open Neural
Network Exchange. https://github.com/onnx/onnx.
Chard, R.; Li, Z.; Chard, K.; Ward, L.; Babuji, Y.; Woodard,
A.; Tuecke, S.; Blaiszik, B.; Franklin, M. J.; and Foster, I.
2019. DLHub: Model and data serving for science. In
2019 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), 283–292. IEEE.
Fursin, G. 2021. Collective knowledge: organizing research
projects as a database of reusable components and portable
workflows with common interfaces. Philosophical Transac-
tions of the Royal Society A, 379(2197): 20200211.
Kahng, M.; Fang, D.; and Chau, D. H. P. 2016. Visual Explo-
ration of Machine Learning Results Using Data Cube Analy-
sis. In Proceedings of the Workshop on Human-In-the-Loop
Data Analytics, HILDA ’16. New York, NY, USA: Associa-
tion for Computing Machinery. ISBN 9781450342070.
Kurtzer, G. M.; Sochat, V.; and Bauer, M. W. 2017. Singu-
larity: Scientific containers for mobility of compute. PLOS
ONE, 12(5): e0177459.
Liao, C.; Lin, P.-H.; Verma, G.; Vanderbruggen, T.; Emani,
M.; Nan, Z.; and Shen, X. 2021. HPC Ontology: To-
wards a Unified Ontology for Managing Training Datasets
and AI Models for High-Performance Computing. In 2021
IEEE/ACM Workshop on Machine Learning in High Perfor-
mance Computing Environments (MLHPC), 69–80. IEEE.
Merkel, D. 2014. Docker: lightweight linux containers for
consistent development and deployment. Linux journal,
2014(239): 2.
Nan, Z.; Guan, H.; Shen, X.; and Liao, C. 2021. Deep nlp-
based co-evolvement for synthesizing code analysis from
natural language. In Proceedings of the 30th ACM SIG-
PLAN International Conference on Compiler Construction,
141–152.
Verma, G.; Emani, M.; Liao, C.; Lin, P.-H.; Vanderbruggen,
T.; Shen, X.; and Chapman, B. 2021. HPCFAIR: Enabling
FAIR AI for HPC Applications. In 2021 IEEE/ACM Work-
shop on Machine Learning in High Performance Computing
Environments (MLHPC), 58–68. IEEE.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al.
2019. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771.

