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Abstract
Spatio-temporal forecasting plays a crucial role in various
sectors such as transportation systems, logistics, and supply
chain management. However, existing methods are limited by
their ability to handle large, complex datasets. To overcome
this limitation, we introduce a hybrid approach that combines
the strengths of open-source large and small-scale language
models (LLMs and LMs) with traditional forecasting meth-
ods. We augment traditional methods with dynamic prompt-
ing and a grouped-query, multi-head attention mechanism to
more effectively capture both intra-series and inter-series de-
pendencies in evolving nonlinear time series data. In addi-
tion, we facilitate on-premises customization by fine-tuning
smaller open-source LMs for time series trend analysis uti-
lizing descriptions generated by open-source large LMs on
consumer-grade hardware using Low-Rank Adaptation with
Activation Memory Reduction (LoRA-AMR) technique to
reduce computational overhead and activation storage mem-
ory demands while preserving inference latency. We combine
language model processing for time series trend analysis with
traditional time series representation learning method for
cross-modal integration, achieving robust and accurate fore-
casts. The framework’s effectiveness is demonstrated through
extensive experiments on various real-world datasets, outper-
forming existing methods by significant margins in terms of
forecast accuracy.

Introduction
Multivariate time series forecasting (MTSF) is a long-
standing task that finds wide application in various domains,
enabling strategic decision-making through the prediction
of multiple related variables that change over time. MTSF
boasts numerous applications across various sectors with
significant financial or operational impacts, such as trans-
portation systems for route planning and navigation, logis-
tics, and supply chain management for demand forecast-
ing. However, MTSF presents several challenges, including
complex relationships between time series variables, non-
linearity, heterogeneity, sparsity, and non-stationarity. Re-
cently, Spatio-Temporal Graph Neural Networks (STGNNs)
have been introduced to improve multi-horizon forecast ac-
curacy on multivariate time series (MTS) data. STGNNs are
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designed to accurately model both the long-range tempo-
ral dependencies within each individual variable time series
and complex inter-dependencies among variables within the
MTS data. STGNNs utilize both (i) explicit relationships,
which are derived from predefined graphs created by hu-
man experts based on their prior domain knowledge, and (ii)
implicit relationships, which are discovered through data-
driven neural relational inference methods. Explicit relation-
ships are static, often incomplete or inaccurate, while im-
plicit relationships can exhibit significant non-linearity and
evolve over time, revealing hidden connections among vari-
ables that may not be readily apparent to human experts.
‘Human-in-the-loop’ STGNNs (Yu, Yin, and Zhu 2017; Li
et al. 2017; Guo et al. 2020) incorporate explicit knowledge
but overlook the latent inter-relationships among the time
series variables underlying the MTS data. A newer class
of ‘human-out-of-the-loop’ STGNNs (Deng and Hooi 2021;
Wu et al. 2020; Kipf et al. 2018) jointly infer the dependency
graph structure, capturing the latent time-conditioned un-
derlying relationships that drive the variable co-movements,
while simultaneously learning the spatio-temporal dynamics
from the MTS data to forecast future values. Despite their
effectiveness, these approaches fail to fully leverage the ac-
curate and reliable explicit (predefined) graph structures pro-
vided by domain experts, particularly when the data is noisy,
leading to suboptimal forecasting. Transformers(Vaswani
et al. 2017), which excel in sequence modeling, are often
preferred over STGNNs for interpreting spatio-temporal dy-
namics due to their ability to capture long-range dependen-
cies through dynamic, context-aware self-attention mecha-
nisms, offering greater scalability and flexibility. Further-
more, while existing STGNNs primarily focus on providing
pointwise forecasts, they lack the ability to generate reliable
uncertainty estimates for these forecasts. Uncertainty esti-
mates are crucial for accurate risk assessment and informed
decision-making. Moreover, current methods typically em-
ploy past data within a predetermined window length to
learn historical patterns and predict future outcomes, with
the duration of these patterns varying across different histor-
ical periods. Existing graph-based forecasting methods often
rely on a fixed window length, adopting a one-size-fits-all
approach. This approach may not be optimal as there is no
universally ideal window length for all MTS data. In real-



world applications, adjusting a predefined window length
can be challenging, often unattainable, and computationally
expensive. Based on our review of prior research, no exist-
ing methods fully capture the complexity of diverse patterns
in MTS data, each characterized by varying lengths and dis-
tinct features. This makes achieving this goal an ambitious
undertaking. In recent years, large language models (LLMs)
such as GPT-4 (OpenAI 2023) have revolutionized natu-
ral language processing(NLP), achieving remarkable perfor-
mance by generating human-like responses and demonstrat-
ing enhanced logical reasoning and multitasking capabili-
ties. These proprietary LLMs have acquired a vast and di-
verse range of linguistic constructs and knowledge through
extensive pretraining on massive datasets. However, their
internal workings remain largely opaque, earning them the
moniker of ‘black-box’ models. This lack of interpretabil-
ity poses challenges for downstream applications, as these
models typically do not provide direct access to logits or to-
ken embeddings. Furthermore, their ‘jack-of-all-trades’ ap-
proach to handling a multitude of tasks often leads to sub-
optimal performance on specialized tasks. In contrast, open-
source LLMs like Llama 2(Touvron et al. 2023b) from Meta
AI offer fine-tuning capabilities but necessitate substantial
computational resources for adaptation to new tasks and do-
mains through fine-tuning, primarily due to their large model
sizes and the requirement for specialized hardware. Con-
versely, open-source small-scale language models (LMs)
such as BERT(Devlin et al. 2018) are cost-effective for fine-
tuning to specialized tasks using task-specific data and pro-
vide interpretability through access to logits or token embed-
dings. However, they may fall short in reasoning and gener-
alization abilities, often generating less coherent and contex-
tually relevant responses compared to larger LMs. Despite
the transformative impact of LLMs in various domains, their
application in time series analysis remains limited, primar-
ily attributed to the scarcity of extensive datasets necessary
for training LLMs for time series tasks. The largest pub-
licly available datasets for time series analysis(Godahewa
et al. 2021), are significantly smaller than those employed
in NLP tasks. While advancements have been made in uti-
lizing LLMs, such as GPT-4, across various scientific disci-
plines, the synergistic integration of general-purpose LLMs
with traditional forecasting methods for MTSF task remains
an underexplored area in the development and advancement
of intelligent forecasting techniques. This integration holds
promise for achieving more accurate and robust future es-
timates. It is crucial to acknowledge that while this ap-
proach is innovative, LLMs such as GPT-4 are not inher-
ently designed for time series analysis. Nonetheless, adapt-
ing them for this purpose, while unconventional, is entirely
feasible. Originally conceived for NLP tasks, LLMs can be
tailored for time series data, providing a unique method to
generate comprehensive textual summaries that capture the
main trends, patterns, and anomalies. These technical de-
scriptions, encompassing trend analysis and data summa-
rization, offer key insights and a multi-modal perspective
that could complement traditional forecasting techniques.
However, there is a significant limitation in sharing sensitive
data with external LLM services. This includes the risks as-

sociated with sending regulated data to external LLM APIs
to generate textual summaries on time series analysis. While
LLMs offer a wide range of potential benefits for enterprises,
their adoption is hindered by several limitations, including
data privacy and sovereignty concerns, costs and customiza-
tion requirements, and security vulnerabilities. To address
these limitations, a novel approach termed ‘On-Premise Se-
cure LLMs’ is proposed. This solution would enable enter-
prises to fine-tune open-source large-scale LMs on their own
proprietary data within their own infrastructure, enhancing
data privacy and sovereignty, reducing costs, increasing cus-
tomization options, and bolstering security. Overall, it of-
fer a promising solution to the limitations of existing pro-
prietary LLMs, potentially democratizing access to LLM
capabilities and accelerating their adoption across a wide
range of MTSF tasks, aligning with the growing demand for
private, tailored AI solutions. Despite the advantages, on-
premise LLMs face challenges such as high computational
resource demands, scalability issues requiring extensive in-
frastructure upgrades, and the need for specialized technical
expertise for deployment and maintenance. In this study, we
introduce a novel framework built upon cross-modal time
series representation learning, referred to as LLM-TS Net
for brevity. The Figure 1 illustrates the proposed framework.
The objective is to utilize the complementary strengths of
open-source large and small-scale language models, and tra-
ditional forecasting methods to establish a more robust and
accurate predictive framework. This approach models the
time-varying uncertainty of framework predictions on fu-
ture estimates, aiming to improve the accuracy of risk as-
sessments and assist decision-makers by estimating predic-
tive uncertainty. It presents a dynamic and flexible prompt
mechanism designed to encode knowledge about various
temporal dependencies and trends, and allows the method
to adapt to the evolving nature of MTS data through trans-
fer and reuse of learned knowledge and improve forecasting
performance. This addresses the limitation of fixed, prede-
fined window lengths, which often fail to account for the
non-stationary nature of real-world MTS data. The frame-
work adopts a time-then-space (TTS) approach, capturing
the non-linear, temporal dynamics within times series vari-
ables before modeling the dependencies among different
variables, offering a holistic understanding of MTS data.
This is achieved through the integration of Grouped-query
Multi-head Attention (GQ-MHA) for both intra- and inter-
series analysis in spatio-temporal MTS data. The framework
introduces a secure on-premise LLM based on the open-
source, pretrained ‘llama2 7B 4k’ model, customized for
time series analysis and designed to run on consumer-grade
hardware (low-cost GPUs). This approach not only reduces
costs but also eliminates the need to transmit sensitive data
to external servers, creating a secure and efficient environ-
ment that protects data privacy and offers customized in-
telligence without high costs or data sovereignty risks. We
use custom prompts with task-specific instructions to query
LLMs in a zero-shot setting, such as the ‘llama2 70B 4k’
model. This approach enables us to generate textual descrip-
tions that cover various aspects, such as identifying main
trends, patterns, and requires the large-scale model to gener-



alize and apply the implicit knowledge acquired during pre-
training on vast text corpora for generating the desired out-
put in analyzing MTS data. Next, we fine-tune small-scale
LMs such as the ‘llama2 7B 4k’ using the generated textual
descriptions for task-specific adaptation to encapsulate the
rich domain-specific knowledge within these descriptions.
We utilize the open-source ‘llama2 70B 4k’ model to ana-
lyze time series trends, owing to its advanced reasoning and
inference capabilities, which are superior in handling com-
plex tasks and yield more accurate and relevant textual de-
scriptions compared to the ‘llama2 7B 4k’ model. We then
fine-tune the ‘llama2 7B 4k’ model on the supervised task
of minimizing cross-entropy loss, using pairs of MTS data-
generated textual descriptions. This approach incorporates
the rich, domain-specific insights extracted by the large-
scale model from the MTS data. As a result, these smaller
models become better equipped to handle similar tasks and
are more aligned with the specific requirements of MTS data
analysis.
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Figure 1: Our framework incorporates the joint optimiza-
tion of three methods: (a) a sequential stack of dynamic
prompting mechanism to transfer relevant historical knowl-
edge for adapting to new trends, coupled with learning intra-
and inter-series dependencies to obtain contextualized time-
series embeddings; (b) the utilization of large-scale model
descriptions on time series trends to fine-tune a smaller lan-
guage model, which then generates text-level embeddings
encapsulating these trends; and (c) an output layer modeled
with the multi-head attention (MHA) mechanism for inte-
grating cross-domain embeddings and facilitating time se-
ries forecasting. This joint optimization framework provides
a comprehensive and robust approach to modeling and fore-
casting spatio-temporal MTS data, enhancing adaptability,
accuracy, and efficiency, and is designed for better general-
ization and scalability in real-world forecasting tasks.

We introduce Low-Rank Adaptation with Activation
Memory Reduction (LoRA-AMR), a powerful new tool for
fine-tuning LLMs such as the ‘llama2 7B 4k’ on generated
descriptions for time series analysis. LoRA-AMR is effi-
cient, fast, accurate, and enables new applications in var-
ious domains. This memory-efficient adaptation technique
reduces trainable parameters and activation memory to up-
date the low-rank weights, resulting in no additional com-
putational overhead during fine-tuning and no increased la-
tency during inference. It achieves comparable performance
to full-parameter fine-tuning across various datasets on fore-
casting tasks. Furthermore, LoRA-AMR significantly cuts
memory costs, allowing for the use of less powerful hard-
ware. In contrast, the standard LoRA approach(Hu et al.
2022) is disadvantaged by its high activation memory con-
sumption, which neither reduces nor may even increase the
memory footprint compared to full-parameter fine-tuning,

potentially creating a new memory bottleneck. Overall, this
work presents the following contributions:
• We present a dynamic prompting mechanism to enhance

the adaptability and accuracy of time series representa-
tion learning methods. This mechanism recognizes and
applies learned patterns from historical data, enabling it
to adapt to changing data distributions. It functions sim-
ilarly to knowledge transfer, applying previously learned
patterns to new, similar input data. Additionally, the tra-
ditional method learns both intra- and inter-series de-
pendencies for a comprehensive understanding of com-
plex relationships in multi-dimensional data. This ap-
proach significantly enhances the accuracy and reliability
of forecasts in multi-sensor environments.

• The LoRA-AMR method offers a trifecta of benefits:
enhanced memory efficiency, consistent computational
load, and reduced activation storage memory require-
ments, all without compromising inference latency. A
larger LM, such as ‘Llama2-70B’, is employed to gener-
ate textual descriptions of patterns and trends. This pro-
cess facilitates a context-driven interpretation of MTS
data. Fine-tuning the smaller ‘Llama2-7B’ model using
generated descriptions using the powerful LoRA-AMR
technique not only enables efficient and effective cus-
tomization of the smaller LM to the specific task but also
leverages the advanced capabilities of larger LLMs to en-
hance the performance and versatility of smaller LMs.

• We integrate text-level embeddings obtained from fine-
tuned smaller LMs and time series embeddings from
traditional methods using a multi-head attention mech-
anism. This approach enables the capture of contextually
relevant information from cross-domains, enhancing the
analysis and understanding of MTS data.

Problem Definition
Consider a dynamic system equipped with N sensors that
gather sequential data over T time intervals on F input
features, represented in a spatio-temporal matrix X ∈
RN×T×F . These features typically include key attributes
such as traffic speed, flow, and density. Specifically, we de-
fine Xi ∈ RT×F as the historical data for the i-th sensor,
encompassing all features over time, and Xt ∈ RN×F as the
historical data for all sensors at time step t, including all fea-
tures. In our work, we predict traffic flow using only F = 1
to ensure a fair and rigorous comparison with the baselines
in traffic forecasting datasets. In the non-stationary time se-
ries data matrix X ∈ RN×T , each row represents data from
a sensor, while each column corresponds to data at a spe-
cific timestamp. We use subscripts and superscripts to de-
note data from a specific sensor and timestamp, respectively.
For instance, Xi = Xi,: represents the time series data from
sensor i, and Xt = X:,t represents the data across all sen-
sors at timestamp t. In the context of time series forecasting,
we employ the sliding window technique to divide the his-
torical dataset into overlapping, consecutive segments. This
approach allows predictive models to adapt to changing pat-
terns and complex dynamics, thereby effectively capturing
both short-term and long-term trends, as well as seasonality
and other dominant characteristics. We construct the sam-
ples Xt−W :t−1 ∈ RN×W×F using a sliding window of size



W . In traffic forecasting, our objective is to train a neural
network, denoted as Θ, to predict future data for the up-
coming ν steps, represented as St+1 = Xt:t+ν−1, based on
historical observations St = Xt−W :t−1. The process is il-
lustrated as follows: St Θ−→ St+1

The loss function to train the spatio-temporal encoder is
mean absolute error(MAE) loss, defined as follows:

L(Θ) =
1

|ν|
|Ŝt+1 − St+1|

where Ŝt+1 represents the framework’s predictions and
St+1 is the ground truth. Specifically, we define St+1 =
Xt:t+ν−1 ∈ RN×1×F for single-step forecasting, and
St+1 = Xt:t+ν−1 ∈ RN×ν×F for multi-step forecasting.
Here, ν represents the forecasting horizon.
LoRA-AMR: LLMs have revolutionized natural language
processing(Brown et al. 2020; Touvron et al. 2023a; Ope-
nAI 2023; Anil et al. 2023), and fine-tuning these large-
scale models has proven to be highly effective in enhanc-
ing their performance across various tasks and in aligning
with human intent(Liu et al. 2019; Wei et al. 2021). How-
ever, fine-tuning LLMs with their full set of parameters can
be extremely resource-intensive, especially for specialized
tasks on consumer-grade hardware, due to memory con-
straints. To address this challenge, parameter-efficient fine-
tuning (PEFT) methods have been introduced. These meth-
ods focus on updating only a small subset of the trainable
parameters, such as adapter weights (Houlsby et al. 2019)
and prompt weights (Li and Liang 2021; Lester, Al-Rfou,
and Constant 2021). In particular, Low-Rank Adaptation
(LoRA) (Hu et al. 2022), is notable for fine-tuning pretrained
LLMs to achieve performance comparable to full-parameter
fine-tuning. It accomplishes this by updating only a small
number of learnable pairs of low-rank adapters(weights)
while keeping the base parameters static. This technique
has been widely adopted in various applications (Dettmers
et al. 2023), facilitating efficient task-specific adaptation.
LoRA prevents catastrophic forgetting in general-purpose
large-scale models during continual learning by enabling
them to adapt to new tasks without overwriting the pre-
trained knowledge base. This allows them to retain their
prior knowledge while effectively learning new information.
In essence, LoRA represents a parameter-efficient adapta-
tion technique that substantially enhances the capabilities
of LLMs. It achieves this by integrating parallel low-rank
adapters alongside the original weights of a linear layer,
as depicted in Figure 2(b). These adapters operate in con-
junction with the frozen pre-trained weights(W0) of the lin-
ear layer. This approach significantly reduces memory us-
age while maintaining inference efficiency. It accomplishes
this by keeping the primary weights static and updating only
the lightweight, ancillary parameters—the LoRA adapters.
LoRA aims to introduce additional trainable parameters
(∆W ) that capture task-specific information without alter-
ing the original pre-trained weights (W0). To achieve this,
LoRA constrains weight updates to a low-rank decomposi-
tion, expressed as W0 + ∆W = W0 + αBA, where W0

represents the original pre-trained weight matrix with di-
mensions Rd×d. ∆W denotes the low-rank approximation
added to the original weights during model adaptation (fine-

tuning). This approximation is constructed as the product of
two low-rank matrices, B and A, both confined within a low-
rank space. Here, B is the projection-down weight matrix
with dimensions Rd×r, A is the projection-up weight ma-
trix with dimensions Rr×d. The notation r ≪ d indicates
that the rank of the decomposition is significantly smaller
than d, leading to substantial memory savings. The hyper-
parameter α, typically valued at 1

r , is a positive constant.
The rank r controls the trade-off between model capacity
(how much task-specific information it can learn) and the
complexity (number of parameters to train). During training,
W0 remains fixed, and only the low-rank weights B and A
are updated. This approach reduces the memory overhead by
decreasing the number of trainable parameters to update, the
corresponding gradients to compute, and the optimizer state
size that needs to be maintained. Compared to full-parameter
fine-tuning, this method yields a parameter reduction ratio
of d

2r , which is significant when the rank r is much smaller
than the dimension d. Furthermore, LoRA introduces no ad-
ditional inference latency, as the product of BA is added
element-wise into W0. However, LoRA faces challenges re-
lated to high memory usage during fine-tuning. This is due to
the necessity of storing large input activations of X through-
out the forward-propagation phase for gradient computation
of the weight matrix A in the back-propagation phase. As
a result, LoRA incurs high activation memory costs compa-
rable to conventional full-parameter fine-tuning, potentially
leading to a memory bottleneck. Current solutions include
selectively applying LoRA to specific layers (Hu et al. 2022)
or employing activation recomputation (Chen et al. 2016) to
mitigate this issue. However, these strategies might affect
the fine-tuning performance and efficiency.
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Figure 2: The illustration of (a) full-model fine-tuning (FT),
(b) LoRA, and (c) LoRA-AMR.

In this work, we introduce LoRA-AMR, a novel approach
designed to significantly reduce the activation memory foot-
print associated with LoRA without incurring additional
computational costs. LoRA-AMR innovates by freezing the
pre-trained weight W0 as well as the projection-down weight
B. Furthermore, it redefines the projection-up weight A as
the product of two low-rank matrices, D and C. Specif-
ically, D, the second projection-down weight, has dimen-
sions Rr× r

2 , and C, the second projection-up weight, has di-
mensions R r

2×d. In our proposed method, D remains static
while only C is updated during training. In short, by freez-
ing W0, B, and D, and updating only C, LoRA-AMR re-
duces the number of trainable parameters and minimizes
the size of the input activations that must be stored during
training for gradient computation during backward propa-



gation, all with no additional inference latency. This mod-
ification results in a substantial decrease in the activation
memory required, as it confines the input activation stor-
age to the lower-dimensional output of matrix D. Conse-
quently, the only input that needs to be stored during the
feed-forward pass is the much smaller transformed input
DBX , used to compute the gradient of C during the back-
ward propagation. Here, X is first mapped through weights
B and D to a lower dimension before being projected back
up through weight C, significantly reducing the activation
memory demands. Figure 2 compares the full-model fine-
tuning (FT), LoRA, and LoRA-AMR approaches. LoRA-
AMR begins by initializing the low-rank parameters B and
D, which are randomly drawn from a normal distribution.
It sets C initially to zero. As a result, the adaptation weight
matrix ∆W = BA = B(DC) remains zero at the start.
This ensures that the outputs of the pretrained LLMs remain
unchanged before fine-tuning begins. During fine-tuning, B
and D are held fixed. This means that updates to the model
weights through ∆W are confined to a subspace of reduced
rank, specifically r/2, as determined by the initial column
space of D. This approach strategically limits weight up-
dates to this lower-dimensional space, preserving the in-
tegrity of the original LLMs predictions while the model
undergoes task-specific adaptation. LoRA-AMR is an effi-
cient fine-tuning method for LLMs that reduces computa-
tional overhead and activation storage memory requirements
without impacting inference latency. It simplifies fine-tuning
by restricting updates to a low-rank weight, C, thus avoid-
ing any increase in memory overhead. This is achieved by
freezing weights and omitting gradient calculations for B
and D, effectively reducing expensive activation memory
consumption. During inference, LoRA-AMR adds low-rank
weights ∆W = BA = B(DC) element-wise directly into
the pre-trained weight matrix W0. This ensures no extra la-
tency is introduced, thereby maintaining the efficiency of a
fully fine-tuned model. In summary, LoRA-AMR presents
a trifecta of benefits: a) It enhances memory efficiency by
minimizing the number of trainable parameters by confining
the weight adaptations to low-rank decompositions of matri-
ces and shrinking the size of activations needed to be stored
during training, b) It maintains a consistent computational
load during the fine-tuning phase without adding to the la-
tency during inference.
Fine-Tuning small-scale LMs: Llama 2 is an autoregres-
sive, language-optimized transformer architecture designed
for specific applications. It has been fine-tuned using su-
pervised fine-tuning (SFT) and reinforcement learning with
human feedback (RLHF) to align with human preferences
for helpfulness and safety. Llama 2 introduces enhance-
ments such as RMSNorm pre-normalization, PaLM-inspired
SwiGLU activation functions, and rotary positional embed-
dings to improve performance and efficiency. The imple-
mentation of grouped-query attention extends its context
length capability to 4096 tokens, significantly improving its
ability to handle longer text sequences. The Llama2 model
infact has 32 layers and 32 attention heads, with a hidden
size (dimensionality) of 4096. It supports a maximum batch
size of 32 and can output sequences up to 2048 tokens in

length. We incorporate LoRA-AMR modules into every lin-
ear layer within the transformer blocks to augment the fine-
tuning efficacy (Zhang et al., 2023), where these modules
update only a small set of parameters added to the exist-
ing weights. This efficient updating, achieved by introduc-
ing low-rank matrices, captures the essential changes needed
during fine-tuning, enabling the adaptation of a large model
to the specialized task without extensive retraining and thus
saving computational resources. Time series data, composed
of numerical sequences, exhibits a structural similarity to
language data. However, the elements of these sequences are
numbers rather than words. Language models, recognized
for their ability to produce coherent and contextually rele-
vant text across a diverse range of topics, have the potential
to excel at generating technical descriptions of trends and
patterns in time series. Such descriptions would typically
involve identifying notable upward or downward trends, an-
alyzing seasonal patterns or cycles, pinpointing anomalies,
and evaluating long-term trends. Despite their remarkable
capabilities, language models face challenges with numeri-
cal data due to their tokenization methods. A prevalent tech-
nique, Byte-Pair Encoding (BPE), segments numbers into
inconsistent segments based on their frequency in the train-
ing data, hindering the acquisition of fundamental mathe-
matical operations. The LLaMA tokenizer alleviates this is-
sue by tokenizing the numbers into individual digits, lead-
ing to a significant enhancement in mathematical perfor-
mance. For example, the model can effectively tokenize the
sequence ‘123’ is composed of the individual digits ‘1’, ‘2’,
‘3’. The Llama 2 architecture employs a 16-bit format for
its model weights, implying that each weight occupies 2
bytes of memory. This translates to a memory cost of 2m,
where m represents the number of model parameters. For
instance, decoder-based NLG models like LLaMA-7B incur
a memory cost of 14 GB for model weights. However, this
14 GB requirement exceeds the memory capacity of a sin-
gle consumer GPU, such as those in the Nvidia GeForce se-
ries, which typically have a 12 GB GPU memory. In LoRA-
AMR, the pretrained model weights are frozen during fine-
tuning, allowing them to be quantized into lower bit widths
without compromising fine-tuning performance. This quan-
tization can significantly reduce both computational cost
and memory footprint. For instance, combining 4-bit quan-
tization method with LoRA-AMR can reduce the model
weight memory by up to 4 times. This reduction in bit-width
leads to substantial savings in memory and computational
resources, thereby enhancing the model’s efficiency during
both training and inference. Quantization is the process of
converting a real number into a fixed-point representation.
In 4-bit quantization, a real number is converted into an 4-
bit fixed-point representation. This technique can reduce the
memory footprint of a large model by quantizing its weights,
making LoRA models more accessible for fine-tuning with
limited hardware resources for task-specific customization.
One advantage of LoRA-AMR is that it can quantize LLMs
to 4 bits without significant accuracy loss, as it effectively
compensates through the low-rank adapters for the typical
accuracy reduction associated with 4-bit quantization. How-
ever, only the original, pre-trained weights that are frozen



are quantized. The low-rank adapters that are updated are
in the 16-bit format. During inference, the frozen 4-bit
parameters are dequantized to 16-bit for backpropagation.
We use zero-shot prompting to instruct open-source LLMs,
such as Llama2-70B, to generate technical descriptions of
time series trend analysis. Llama2-70B-assisted time se-
ries trend analysis data generation is a method for creating
high-quality training data for fine-tuning smaller Llama2-7B
models. Llama2-70B-assisted time series trend analysis data
generation offers several advantages over traditional meth-
ods, such as manual analysis by humans. It can process and
interpret complex datasets that might be challenging for hu-
mans, especially those involving multivariate relationships
or nonlinear trends. We employ supervised fine-tuning of a
smaller Llama2-7B model, utilizing the LoRA-AMR tech-
nique and 8-bit quantization, based on provided input-output
pairs of time series data and corresponding textual descrip-
tions, minimizing cross-entropy loss. This approach proves
particularly effective for sequence generation tasks, such as
generating technical descriptions for unseen time series data.
Supervised fine-tuning emerges as a powerful technique, en-
abling the adaptation of smaller Llama2-7B models to time
series trend analysis, even if such tasks were not explicitly
considered during the pre-training of the smaller language
model. After fine-tuning a small-scale Llama2-7B model
using the technical descriptions generated by Llama2-70B
for domain-specific customization. We input text sequences
from the Llama2-70B model, denoted as Se ∈ RN×W×m,
into the smaller Llama2-7B model, referred to as the LMexpl
model, to compute expressive token embeddings that cap-
ture contextual information and semantic relationships be-
tween words or phrases:

Hexpl = LMexpl(Se)

where Hexpl ∈ RN×W×m×d denotes the context-aware
token embeddings, with m representing the number of to-
kens in the input sequence Se, d being the dimensionality of
token embedding, N denoting the sensors, and W the win-
dow size. We apply a softmax attention pooling mechanism
to these contextualized embeddings to compute text-level
embeddings for each sensor at each historical window step,
which captures the rich domain-specific knowledge embed-
ded within the generated textual descriptions:

αi = softmax(qi); qi = uTHexpl

Htext =
m∑
i=0

αiH
(i)
expl

where u is a trainable parameter and updated based on the
downstream forecasting task. α is the attention coefficient.
The text-level embedding Htext ∈ RN×W×d encapsulates
domain-specific knowledge from the foundational Llama2-
70B on MTS data trend analysis, enhancing explainability
by unpacking the black-box nature of Llama2-70B. This
approach also improves the Llama2-7B model’s ability to
interpret and analyze time series data with high precision,
leveraging the nuanced insights provided by the advanced
analysis capabilities of Llama2-70B.
Dynamic Prompting Mechanism Design: Instruction-
Following LLMs leverage large-scale models’ knowledge
using prompt engineering to generate user query responses.

This eliminates fine-tuning or retraining for task-specific
adaptation. However, fixed prompts can lead to suboptimal
performance, highlighting the potential for refined prompt
design to enhance model performance across applications.
Traditional forecasting models face a similar challenge in
their limited adaptability for diverse forecasting scenarios.
Their inability to process dynamic, non-stationary data hin-
ders their predictive accuracy and applicability, often arising
from the use of fixed historical data window sizes. Further-
more, their limited ability to handle non-stationary distribu-
tions, capture long-range dependencies, and predict complex
relationships among time series variables contributes to this
limitation. Identifying these latent relationships is crucial for
uncovering non-obvious patterns, which are vital to effec-
tive time series modeling. Analogous to language models,
dynamic prompting in time series forecasting addresses the
limitations of traditional methods, enabling more adaptable
and accurate predictions in response to ever-evolving MTS
data patterns. We introduce a dynamic prompting mech-
anism that enables traditional forecasting methods to ac-
cess relevant past knowledge and apply it to new, similar
time series data. This enhancement improves the methods
ability to adapt to different types of time series patterns
or trends, thereby increasing their efficiency and accuracy.
Our work employs a predefined window length, which may
not be optimal for capturing the evolution of temporal pat-
terns and interrelated variable dynamics over time, given
the varying durations of these patterns. An excessively large
window length can obscure short-range patterns within the
data, while an excessively small window may fail to capture
long-range patterns. To address these limitations, we employ
prompts specifically designed to capture various time series
characteristics and utilize retrieval-based prompt selection
for temporal reasoning and knowledge sharing across the
time series data. This approach facilitates the identification
and application of learned patterns for forecasting tasks. To
address the dynamic nature of real-world MTS data, which
is often characterized by distributional shifts, our approach
introduces a shared pool of prompts, each uniquely identi-
fied by distinct key-value pairs. This prompt pool consists of
key-value pairs, where each key is a vector in the embedding
space and each value is a corresponding prompt representa-
tion. This design aims to enable the framework to effectively
draw upon relevant past knowledge, particularly in scenar-
ios where the input time series data resembles or is similar
to past data. This allows the framework to access a corre-
sponding set of prompts from this collective pool, enabling
the model to selectively identify and use the most fitting and
appropriate prompts for each specific instance of time se-
ries data. This approach enhances modeling efficiency and
predictive accuracy by empowering the framework to iden-
tify and employ patterns across the historical data leveraging
a shared prompt pool. These prompts encapsulate various
time series characteristics, such as temporal dependencies,
periodic trends, and seasonality pertinent to diverse time pe-
riods, facilitating the model’s adaptation to new and varied
data. The shared pool of prompts stored as key-value pairs
is defined as follows:

VK = {(k1, V1) , (k2, V2) , · · · , (kM , VM )}



Where M is the predefined length of the prompt pool,
Vm ∈ RW×d represents a single prompt with a token length
of W and an embedding size of d in the set V = {Vm}Mm=1,
and km ∈ Rd is the key for each prompt in the set K =

{km}Mm=1. We project the initial time series data of each
sensor St

i ∈ RW×1 through a shared linear layer to trans-
form it into a d-dimensional space St

i ∈ RW×d. Each
prompt in this key-value pair method is designed to encap-
sulate specific domain knowledge relevant to the forecasting
task, enabling the model to utilize pre-existing insights to
enhance its predictions. The time series data can attend to
multiple prompts, collectively encoding knowledge relevant
to the forecasting task, encompassing various time series
characteristics. By learning to associate different prompts
with diverse types of time series behavior, the framework ef-
fectively handles a wide spectrum of patterns, even those not
encountered during training, leading to a deeper understand-
ing and more accurate predictions of complex behaviors. We
employ an additive attention mechanism to calculate the rel-
evance of a given prompt (key-value pair) to the current in-
put time series query St

i, enabling efficient retrieval of the
most pertinent prompts to facilitate dynamic adaptation to
input data. Given a query St

i ∈ RW×d and a key km ∈ Rd,
the score-matching function is denoted as follows:

a(St
i,km) = W⊤

v tanh(WqS
t
i +Wkkm) ∈ R

where Wq ∈ RW×d, Wk ∈ Rd×d, Wv ∈ Rd and a :
RW×d × Rd → R. This function identifies the most similar
prompt keys and selects the corresponding prompt values.
Through this score-matching function, the framework learns
to optimize its predictions based on the retrieved prompts,
resulting in overall improved forecasting performance. We
then retrieve the top-K corresponding prompt values for the
input time series query St

i and concatenate them to obtain
the time series embedding for each sensor i as follows,

S̃t
i =

[
V1; · · · ;VK;St

i

]
Wo, 1 ≤ K ≤ M

where the linear layer (or fully connected layer) Wq ∈
R((K+1)×d)×d) and S̃t

i ∈ RW×d. In summary, the frame-
work employs a static prompt pool and a selection-based
prompt method to efficiently train the framework for fore-
casting tasks. This approach facilitates the reuse of learnable
continuous vector representations that encapsulate tempo-
ral knowledge, enabling the framework to adapt to evolving
non-stationary time series data distributions and maintain
forecasting accuracy as time series data progresses. Build-
ing upon the foundation established by our dynamic prompt
pool, we now turn our attention to learning the temporal dy-
namics within MTS data. This progression from employing
a diverse prompt pool to exploring the temporal intricacies
enables our model to not only recognize but also profoundly
comprehend the evolving relationships in time series data.
Modeling Intra-series dependencies: In this section, we
aim to model the temporal dynamics of MTS data. Our goal
is to accurately learn the intra-series dependencies within a
single time series variable for improved pointwise forecasts.
In this context, given the contextualized time series embed-
ding, denoted as S̃t ∈ RN×W×d, we utilize the Grouped-
query Multi-head Attention mechanism (GQ-MHA) to cap-

ture the non-linear, time-evolving dependencies underlying
MTS data. This involves projecting the time series embed-
ding for each group g and each of the N sensors. The time
series embedding S̃t

n ∈ RW×d for sensor n is projected to
form shared keys Kg , shared values Vg , and a unique query
projection Qg,h for each head in the group as follows:

Kn
g = S̃t

nWKg
, n = 1, . . . , N

V n
g = S̃t

nWVg , n = 1, . . . , N

Qn
g,h = S̃t

nWQg,h
, n = 1, . . . , N.

Here, the weight matrices WKg , WVg , and WQg,h
have di-

mensions Rd×d. Consequently, the dimensions of Kn
g , V n

g ,
and Qn

g,h for each sensor n are RW×d, respectively. We then
calculate the temporal attention transformed embeddings.
For each sensor n and each head h within the group g, the
transformed time series embeddings are computed using the
scaled dot-product attention mechanism as follows:

Attention(Qn
g,h,K

n
g , V

n
g ) = softmax

(
Qn

g,h(K
n
g )

T

√
dk

)
V n
g

where dk = d
H is a scaling factor and H is the total num-

ber of heads. We perform aggregation across heads for each
sensor in a group g. For aggregating across multiple groups,
assuming there are G groups, we average the outputs from
each group for each sensor as follows:

S̃t
n =

1

G

G∑
g=1

(Concat(Attention1, . . . ,AttentionH)Wo)

Here, Wo ∈ RHd×d. These steps of head-level and group-
level aggregation are crucial for synthesizing a concise rep-
resentation of the time series data. In conclusion, the inte-
gration of a flexible retrieval-based prompt pool with an ad-
vanced attention mechanism for learning intra-series depen-
dencies represents a comprehensive approach to time series
modeling. Intra-series modeling focuses on understanding
the temporal dynamics within a single univariate variable,
while inter-series modeling broadens this scope to include
the dependencies among different variables. Together, they
aim to capture the full spectrum of dependencies in spatio-
temporal MTS data. The next section will discuss the inter-
series modeling approach and its contribution to the devel-
opment of an integrated analytical framework for enhancing
our understanding of the multi-dimensional nature of data.

Modeling Inter-series dependencies: In this section, we
aim to model and learn the inter-dependencies among vari-
ables underlying the spatio-temporal MTS data to pro-
vide accurate pointwise forecasts. In this context, given the
contextualized time series embedding, denoted as S̃t ∈
RN×W×d, the goal is to utilize the Grouped-query Multi-
head Attention mechanism (GQ-MHA) to capture the spatial
dependencies among different variables at each time step.
This involves projecting the time series embedding for each
window step w and each group g. The time series embedding
S̃t
w ∈ RN×d for window step w is projected into shared keys

Kg , shared values Vg for each group g, and a unique query
projection Qg,h for each head h in the group g as follows,



Kw
g = S̃t

wWKg , w = 1, . . . ,W

V w
g = S̃t

wWVg , w = 1, . . . ,W

Qw
g,h = S̃t

wWQg,h
, w = 1, . . . ,W.

Here, the weight matrices WKg
, WVg

, and WQg,h
have di-

mensions Rd×d. Consequently, the dimensions of Kw
g , V w

g ,
and Qw

g,h for each window step w are RN×d, respectively.
The GQ-MHA mechanism calculates the attention scores at
each window step w. This mechanism is pivotal for under-
standing the inter-dependencies among different variables in
the spatio-temporal MTS data. Specifically, for each window
step w and each head h within the group g, the spatial atten-
tion transformed embeddings are computed using the scaled
dot-product attention mechanism as follows:

Attention(Qw
g,h,K

w
g , V w

g ) = softmax

(
Qw

g,h(K
w
g )T

√
dk

)
V w
g

Here, dk = d
H is the scaling factor, and H denotes the to-

tal number of heads in the attention mechanism. After com-
puting the attention scores, the framework aggregates these
scores across all heads and groups to synthesize a compre-
hensive representation. The aggregation is performed as fol-
lows:

S̃t
w =

1

G

G∑
g=1

(Concat(Attention1, . . . ,AttentionH)WO)

where WO ∈ RHd×d. In conclusion, the utilization of
the GQ-MHA mechanism for modeling both intra-series and
inter-series dependencies offers a robust framework for fore-
casting in spatio-temporal MTS data. By capturing the com-
plex, non-linear relationships both within and across differ-
ent series, this approach significantly enhances the accuracy
and reliability of forecasts in multi-sensor environments.

Output Layer: We employ the multi-head attention
mechanism (MHA)(Vaswani et al. 2017) to integrate the
text-level embeddings Htext with the spatio-temporal atten-
tion transformed time series embeddings S̃t. This integra-
tion enables the capture of contextually relevant informa-
tion and achieves semantic alignment across different cross-
domain embeddings, resulting in the framework predictions
Ŝt+1. Thus, by focusing on and aligning high-level textual
descriptions (text-level embeddings) with expressive time
series embeddings, we ensure a comprehensive understand-
ing and analysis of MTS data from both perspectives.

Dataset Nodes Timesteps Time-Range Data Split Granularity
PeMSD3 358 26,208 09/2018 - 11/2018

6 / 2 / 2 5
m

ins

PeMSD4 307 16,992 01/2018 - 02/2018
PeMSD7 883 28,224 05/2017 - 08/2017
PeMSD8 170 17,856 07/2016 - 08/2016

PeMSD7(M) 228 12,672 05/2012 - 06/2012
METR-LA 207 34,272 03/2012 - 06/2012

7 / 1 / 2
PEMS-BAY 325 52,116 01/2017 - 05/2017

Table 1: The table provides a comprehensive overview of
traffic datasets used in the MTSF task, detailing the times-
tamps, time range, data split, and granularity.

DATASETS
Our study evaluates the proposed framework, LLM-TS
Net, and its variant for estimating the uncertainty of fu-
ture estimates, w/Unc-LLM-TS Net, on large-scale spatial-
temporal traffic datasets (PeMSD3, PeMSD4, PeMSD7,
PeMSD7(M), PeMSD8) obtained from the Caltrans Perfor-
mance Measurement System (PeMS, (Chen et al. 2001)).
PeMS is a crucial system for providing real-time and his-
torical traffic data that is essential for traffic management,
monitoring, and analysis on California’s freeways. The pri-
mary purpose of this system is to collect and assess real-
time traffic information from an extensive network of detec-
tors. Table 1 provides details about the benchmark datasets.
To maintain consistency with previous research, we con-
verted the 30-second interval data into 5-minute averages,
adhering to the method presented by (Choi et al. 2022).
Additionally, we employed publicly available traffic flow
datasets (METR-LA and PEMS-BAY) obtained from (Li
et al. 2018a), converting them into 5-minute interval aver-
ages. This consistent data format enabled us to demonstrate
the effectiveness of our methodology in analyzing and mod-
eling complex spatio-temporal MTS data, surpassing the
performance of existing methods.

EXPERIMENTAL RESULTS
Table 2 presents a detailed comparison between the pro-
posed models, namely LLM-TS Net and w/Unc-LLM-TS
Net, and various baseline models in the MTSF task. This
evaluation encompasses five benchmark datasets: PeMSD3,
PeMSD4, PeMSD7, PeMSD7M, and PeMSD8. The perfor-
mance of the proposed models was assessed by measuring
forecast errors for a recognized benchmarking task that in-
volves using historical data from 12 time steps prior to pre-
dicting estimates 12 time steps into the future. Our assess-
ment employed a multi-metric approach in multi-horizon
prediction tasks to comprehensively evaluate the models per-
formance compared to baseline models. To ensure a thor-
ough and robust analysis, we utilized various performance
metrics, including mean absolute error (MAE), root mean
squared error (RMSE), and mean absolute percentage error
(MAPE), to gauge the effectiveness of the models. In this
study, we report the results of baseline models from (Choi
et al. 2022). Our experimental findings demonstrate that the
proposed models, LLM-TS Net and w/Unc-LLM-TS Net,
consistently outperform the baseline models in terms of per-
formance, achieving lower forecast errors across a variety of
benchmark datasets. The empirical results highlight the ef-
fectiveness of this proposed neural forecasting architecture
in capturing the complex and nonlinear spatio-temporal dy-
namics in MTS data, resulting in improved forecasts. The
w/Unc-LLM-TS Net model, which integrates LLM-TS Net
with local uncertainty estimation, not only provides point-
wise forecasts but also predicts time-varying uncertainty es-
timates in its predictions. While it exhibits slightly lower
performance compared to the LLM-TS Net model, it still
surpasses several robust baselines in existing literature, as
evidenced by its reduced prediction error. Additional exper-
imental results, experimental setup, uncertainty estimation
are discussed in detail in the technical appendix.



CONCLUSION
Our framework combines fine-tuning general-purpose
LLMs with time series representation learning techniques
aiming to deeply understand the spatial-temporal dynam-
ics in MTS data, leading to precise multi-horizon forecast-
ing. Experimental validation on real-world datasets confirms
the effectiveness of our approach, as evidenced by enhanced
multi-horizon forecasts and reliable uncertainty estimations.
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Technical Appendix
Table 3 presents a comparative analysis in terms of the per-
centage increase in the performance of the proposed traf-
fic prediction models, LLM-TS Net and w/Unc-LLM-TS
Net, compared to the baselines. The analysis covers five
benchmark PeMS datasets (PeMSD3, PeMSD4, PeMSD7,
PeMSD8, and PeMSD7(M)) and employs three key perfor-
mance metrics: Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and Mean Absolute Percentage Er-
ror (MAPE). The results reveal a consistent trend of per-
formance improvement for both models over the next-best
baseline models, with w/Unc-LLM-TS Net slightly outper-
forming LLM-TS Net in most scenarios. This trend holds
across all datasets, except for a notable exception in the
PeMSD7 dataset under the MAPE metric, where w/Unc-
LLM-TS Net exhibits a marginal decrease in performance.
Particularly, w/Unc-LLM-TS Net excels in reducing MAE
and RMSE across all datasets, indicating its robustness
and reliability in traffic prediction. These results underscore
the effectiveness of these models in traffic prediction tasks
and highlight the significant advancements in model accu-
racy and reliability, positioning these models as strong con-
tenders in the field of traffic prediction and analysis.

Additional Datasets and Experimental Results
Figures 3 and 4 illustrate the performance comparison of
various models, including LLM-TS Net, w/Unc-LLM-TS
Net, and several baseline models, on two datasets (METR-
LA and PEMS-BAY) for the MTSF task. These models
were evaluated using key metrics such as MAE, RMSE,
and MAPE, with their forecast accuracy measured at 3-, 6-,
and 12-steps ahead forecast horizons. Lower error in these
forecasts indicates better model performance, highlighting
their effectiveness in MTSF tasks. The baseline model re-
sults were reported from a prior study(Jiang et al. 2021).
Our experimental study revealed that our proposed model,
LLM-TS Net, surpassed the baseline models in all the men-
tioned evaluation metrics across various forecasting hori-
zons. In detail, the LLM-TS Net model demonstrated con-
sistently higher accuracy and lower error rates compared to
the baseline models. Additionally, Table 4 presents a com-
parative analysis, showing the percentage performance im-
provement of the LLM-TS Net and w/Unc-LLM-TS Net
models over the next-best SOTA baseline across the bench-
mark datasets. The comparative performance of the LLM-
TS Net and w/Unc-LLM-TS Net models on the METR-
LA and PEMS-BAY datasets reveals significant improve-
ments in forecasting accuracy over baseline models by non-
trivial margins. The LLM-TS Net model, in particular, ex-
hibits notable enhancements across all metrics, with the



highest increases observed in the shorter prediction inter-
vals (MAPE@3, MAE@3, RMSE@3). This is especially
evident in the PEMS-BAY dataset, where improvements
like 49.25% in MAPE@3 and 47.58% in RMSE@3 are
remarkable. The w/Unc-LLM-TS Net model also demon-
strates substantial improvements, though slightly lower than
its counterpart, following a similar trend of higher perfor-
mance in shorter prediction intervals and a gradual decrease
in improvement at longer intervals. Across both datasets, the
LLM-TS Net generally outperforms the w/Unc-LLM-TS
Net, and both models tend to perform better on the PEMS-
BAY dataset compared to METR-LA. These trends, high-
lighting the superiority of these models in time series fore-
casting, are crucial for understanding their predictive capa-
bilities and are significant.

Ablation Study
The proposed LLM-TS Net model introduces a unified
framework that integrates various components to enhance
the accuracy and reliability of forecasting in spatio-temporal
MTS data. The overall framework architecture is illustrated
in Figure 1. (i) The first key component leverages both large-
scale language models (LLMs) like Llama2-70B for gener-
ating textual descriptions of time series trends and smaller
LLMs such as Llama2-70B for fine-tuning on generated de-
scriptions for task-specific adaptation. This allows for the
computation of text-level embeddings, capturing the insights
contained within the descriptions. This approach takes ad-
vantage of the advanced reasoning and inference capabili-
ties of large-scale LLMs, while the smaller LLMs provide
task-specific fine-tuning that is both cost-effective and effi-
cient. It utilizes the LoRA-AMR technique for fine-tuning
smaller LMs, an efficient fine-tuning method that reduces
computational overhead and activation storage memory re-
quirements without affecting inference latency. This method
enhances memory efficiency by limiting updates to low-rank
weight adapters, avoiding expensive activation memory con-
sumption. (ii) The next component for time-series represen-
tation learning involves the following methods: (a) Dynamic
Prompting Mechanism: This mechanism is tailored to uti-
lize learned historical patterns in time series data and adapt
to emerging trends. It utilizes a pool of prompts that facil-
itate the transfer of pertinent historical knowledge for un-
derstanding and adapting to new data patterns. This involves
a retrieval-based prompt selection approach, using prompts
that each represent distinct time series characteristics to
guide the model in forecasting tasks. The prompts are se-
lected based on their relevance to the input data. (b) Model-
ing Intra-Series Dependencies: This method focuses on un-
derstanding and capturing the internal dynamics within each
individual time series. It involves analyzing how each vari-
able in the multivariate time series data evolves over time,
which is crucial for accurate and robust forecasting in com-
plex, real-world scenarios. (c) Modeling Inter-Series Depen-
dencies: This aspect of the framework focuses on under-
standing the relationships between different variables in the
MTS data. It analyzes the spatial dependencies among dif-
ferent variables at each time step. By doing so, it can accu-
rately capture the complex, interrelated dynamics present in

spatio-temporal MTS data. In summary, given a time series
forecasting model utilizing a dynamic prompt-based mech-
anism with a sufficiently large and diverse prompt pool,
the model can approximate any continuous time series fore-
casting function to an arbitrary degree of accuracy, under
the assumption that the prompts are capable of encapsulat-
ing the necessary spatio-temporal dynamics. (iii) The final
component of the framework involves integrating the text-
level embeddings obtained from language model processing
with the spatio-temporal attention-transformed time series
embeddings derived from time series representation learn-
ing. This integration is achieved using the multi-head atten-
tion mechanism, which allows for the capture and alignment
of contextually relevant information from different domains
(textual descriptions and time series data). This fusion leads
to more comprehensive and accurate forecasting results, as
the model can leverage insights from both textual and nu-
merical data sources. Overall, the novel framework effec-
tively combines the strengths of LLMs, dynamic prompting,
time-series-based attention mechanisms, and cross-domain
embedding integration to address the challenges of MTSF,
resulting in a robust and accurate predictive framework. To
evaluate the efficacy and justify the inclusion of each learn-
ing component in our framework, we conducted an abla-
tion study. This involved disabling specific components to
create various ablated versions, which were then tested on
multiple spatio-temporal forecasting datasets in the MTSF
task. We compared the performance of our original frame-
work, serving as the baseline, against its ablated variants.
These variants, with certain components disabled, exhib-
ited a significant decline in performance, emphasizing the
crucial role of each disabled component in the framework.
The study employs a comprehensive set of metrics (MAE,
RMSE, MAPE), providing an exhaustive evaluation of the
ablated variants. The ablation study reinforces the notion
that every component is indispensable for the framework
to achieve its optimal performance in the MTSF task. The
ablated variants that exclude the language model process-
ing, dynamic prompting mechanism, intra-series dependen-
cies, inter-series dependencies, and cross-modal alignment
method are labeled as proposed framework ‘w/o LLMs’,
‘w/o DP’, ‘w/o IntraS’, ‘w/o InterS’, and ‘w/o CMA’, re-
spectively; w/o stands for “without”. Specifically, in the case
of ‘w/o CMA’, we concatenate the cross-domain embed-
dings and then apply a linear layer to transform them for la-
bel prediction. The ablation study results are presented in Ta-
ble 5. A key finding is the superior forecasting performance
of the LLM-TS Net and its uncertainty-weighted variant
w/Unc-LLM-TS Net, compared to the other ablated models
across all datasets (PeMSD3, PeMSD4, PeMSD7, PeMSD8,
and PeMSD7(M)). Our ablation study emphasized the crit-
ical importance of each component in our framework. No-
tably, removing specific components from these models
leads to a noticeable decline in performance, demonstrating
the importance of these elements in the models’ overall ef-
ficacy. The decline in performance is most pronounced in
the ablated variant lacking the cross-modal multi-head at-
tention mechanism (CMA), which exhibits the highest error
rates, underscoring its critical role in enhancing forecast ac-



curacy. Indeed, the increase in error can be attributed to the
substitution of a simplified linear layer. Furthermore, ablated
variants without the dynamic prompting mechanism and lan-
guage processing also exhibit significant performance drops,
highlighting the importance of these features in capturing
complex patterns and dependencies within and across time
series. Moreover, the performance of the ablated variants
varies across different datasets, suggesting that the com-
plexity and characteristics of each dataset uniquely influ-
ence the effectiveness of each component in the framework.
This variation in performance across datasets indicates that
while the LLM-TS Net framework is generally effective,
the contributions of its components can vary depending on
the dataset’s nature. In essence, each component serves a
distinct purpose, contributing to a comprehensive strategy
for the MTSF task. Their collective inclusion in the frame-
work is warranted by the need for in-depth analysis, flexibil-
ity, and a thorough understanding to make precise forecasts.
The consistent outperformance of the LLM-TS Net across
all datasets underscores its effectiveness.
Forecasting Uncertainity
The LLM-TS Net framework employs a supervised learn-
ing approach, centralizing its training on minimizing the
mean absolute error (MAE). This error metric quantifies the
deviation between the model’s forecasts, denoted as Ŝt+1,
and the actual observed data, symbolized as St+1. The MAE
loss function, expressed as LMAE (θ), is computed using the
following formula:

LMAE (θ) =
1

υ

∣∣∣St+1 − Ŝt+1
∣∣∣

Here, υ represents the forecast horizon. The objective in
this process is to iteratively refine the model parameters,
θ, to attain the lowest MAE loss, thereby significantly en-
hancing the accuracy of the model’s forecasts. The w/Unc-
LLM-TS Net, an extension of the LLM-TS Net, is specifi-
cally designed to assess and quantify uncertainties in model
predictions. This capability is crucial for augmenting the
model’s reliability in practical, real-world decision-making
scenarios. The w/Unc-LLM-TS Net excels in predicting
time-variant uncertainties in point-wise forecasts, extending
across multiple future steps. This feature substantially ele-
vates the trustworthiness and dependability of the model’s
output. The forecasted predictions of the model, denoted as
Ŝt+1, follow a heteroscedastic Gaussian distribution. The
mean of this distribution is given by µϕ

(
St
)
, and the vari-

ance is represented by σ2
ϕ

(
St
)
. Here, St signifies the input

time series data. The mathematical representation of this re-
lationship is expressed as:

Ŝt+1 ∼ N
(
µϕ

(
St
)
, σ2

ϕ

(
St
))

This formulation implies that the predictions are modeled
as a normal distribution whose parameters (mean and vari-
ance) are not constant but change in response to the input
data. The predicted mean and standard deviation for each
point in the time series data (Ŝt+1), under the heteroscedas-
tic Gaussian distribution, are derived using a specific equa-
tion. This equation is as follows:

µϕ

(
St
)
, σ2

ϕ

(
St
)
= fθ

(
MHA(Htext, S̃

t+1)
)

In this equation, fθ represents a function parameterized by
θ, which processes the output from the cross-modal align-
ment component, indicated by MHA(Htext, S̃

t+1). Using
this input, the network is designed to forecast the mean
(represented as µϕ

(
St
)
) and standard deviation (denoted

by σ2
ϕ

(
St
)
) of a normal distribution. The network’s abil-

ity to predict these parameters is crucial for generating ac-
curate and reliable forecasts for upcoming time series data
points. The maximum likelihood estimate (MLE) for the
predicted Gaussian distribution, denoted by Ŝt+1, represents
the framework’s predictions for future estimates. This esti-
mate represents the most likely values for the distribution
based on the observed data. The mathematical formulation
of this estimate is as follows:

Ŝt+1 = µϕ

(
St
)

In essence, µϕ

(
St
)

provides an estimate of the expected
value for future predictions (Ŝt+1) based on observed data
from previous time points, spanning from t − W to t − 1
(denoted as St = Xt−W :t−1). Additionally, σ2

ϕ

(
St
)

quan-
tifies the model’s uncertainty in predicting future values for
the next υ time steps, starting from the current time point
t. The Gaussian likelihood of future values, given these pa-
rameters (µϕ

(
St
)

and σ2
ϕ

(
St
)
), is mathematically expressed

as follows:
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The uncertainty modeling framework is designed to mini-
mize the Gaussian negative log-likelihood loss, which is es-
sentially the negative logarithm of the Gaussian probability
density function (Nix and Weigend 1994). This optimiza-
tion focuses on the model’s mean and variance estimates.
By doing so, it provides a robust basis for comprehensively
understanding and quantifying the inherent uncertainty in
the predictions made by the model. Applying a logarithmic
transformation to both sides of the equation, we obtain the
following description:
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We drop the constant(C) and the Gaussian negative log
likelihood loss is described by,



Methods PeMSD3 PeMSD4 PeMSD7 PeMSD8 PeMSD7(M)
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 31.58 52.39 33.78 38.03 59.24 27.88 45.12 65.64 24.51 34.86 59.24 27.88 4.59 8.63 14.35
ARIMA 35.41 47.59 33.78 33.73 48.80 24.18 38.17 59.27 19.46 31.09 44.32 22.73 7.27 13.20 15.38

VAR 23.65 38.26 24.51 24.54 38.61 17.24 50.22 75.63 32.22 19.19 29.81 13.10 4.25 7.61 10.28
FC-LSTM 21.33 35.11 23.33 26.77 40.65 18.23 29.98 45.94 13.20 23.09 35.17 14.99 4.16 7.51 10.10

TCN 19.32 33.55 19.93 23.22 37.26 15.59 32.72 42.23 14.26 22.72 35.79 14.03 4.36 7.20 9.71
TCN(w/o causal) 18.87 32.24 18.63 22.81 36.87 14.31 30.53 41.02 13.88 21.42 34.03 13.09 4.43 7.53 9.44

GRU-ED 19.12 32.85 19.31 23.68 39.27 16.44 27.66 43.49 12.20 22.00 36.22 13.33 4.78 9.05 12.66
DSANet 21.29 34.55 23.21 22.79 35.77 16.03 31.36 49.11 14.43 17.14 26.96 11.32 3.52 6.98 8.78
STGCN 17.55 30.42 17.34 21.16 34.89 13.83 25.33 39.34 11.21 17.50 27.09 11.29 3.86 6.79 10.06
DCRNN 17.99 30.31 18.34 21.22 33.44 14.17 25.22 38.61 11.82 16.82 26.36 10.92 3.83 7.18 9.81

GraphWaveNet 19.12 32.77 18.89 24.89 39.66 17.29 26.39 41.50 11.97 18.28 30.05 12.15 3.19 6.24 8.02
ASTGCN(r) 17.34 29.56 17.21 22.93 35.22 16.56 24.01 37.87 10.73 18.25 28.06 11.64 3.14 6.18 8.12
MSTGCN 19.54 31.93 23.86 23.96 37.21 14.33 29.00 43.73 14.30 19.00 29.15 12.38 3.54 6.14 9.00
STG2Seq 19.03 29.83 21.55 25.20 38.48 18.77 32.77 47.16 20.16 20.17 30.71 17.32 3.48 6.51 8.95
LSGCN 17.94 29.85 16.98 21.53 33.86 13.18 27.31 41.46 11.98 17.73 26.76 11.20 3.05 5.98 7.62

STSGCN 17.48 29.21 16.78 21.19 33.65 13.90 24.26 39.03 10.21 17.13 26.80 10.96 3.01 5.93 7.55
AGCRN 15.98 28.25 15.23 19.83 32.26 12.97 22.37 36.55 9.12 15.95 25.22 10.09 2.79 5.54 7.02
STFGNN 16.77 28.34 16.30 20.48 32.51 16.77 23.46 36.60 9.21 16.94 26.25 10.60 2.90 5.79 7.23
STGODE 16.50 27.84 16.69 20.84 32.82 13.77 22.59 37.54 10.14 16.81 25.97 10.62 2.97 5.66 7.36

Z-GCNETs 16.64 28.15 16.39 19.50 31.61 12.78 21.77 35.17 9.25 15.76 25.11 10.01 2.75 5.62 6.89
STG-NCDE 15.57 27.09 15.06 19.21 31.09 12.76 20.53 33.84 8.80 15.45 24.81 9.92 2.68 5.39 6.76

LLM-TS Net 11.98 17.8 9.44 15.78 22.7 8.87 17.78 27.07 7.67 12.79 18.87 6.79 2.16 4.27 5.22
W/Unc-LLM-TS Net 11.89 17.58 9.62 15.99 24.04 8.73 17.91 28.35 8.93 13.22 20.46 7.09 2.21 4.33 5.5

Table 2: The figure depicts forecast error estimations based on model predictions for a 12-step-ahead forecast horizon on
benchmark datasets(PeMSD3, PeMSD4, PeMSD7, PeMSD8, PeMSD7(M)). Lower the error better the model performance.

Performance Increase (%) PeMSD3 PeMSD4 PeMSD7 PeMSD8 PeMSD7(M)
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

LLM-TS Net 23.06 34.29 37.32 17.86 26.99 30.49 13.40 20.01 12.84 17.22 23.94 31.55 19.40 20.78 22.78
W/Unc-LLM-TS Net 23.64 35.11 36.12 16.76 22.68 31.58 12.76 16.22 1.48↓ 14.43 17.53 28.53 17.54 19.67 18.64

Table 3: The table shows the percentage increase in performance of LLM-TS Net and W/Unc-LLM-TS Net across various
metrics on different PeMS datasets (PeMSD3, PeMSD4, PeMSD7, PeMSD8, PeMSD7(M)). The performance increase is cal-
culated relative to the next-best baseline models.

Datasets Increase (%) RMSE@3 MAE@3 MAPE@3 RMSE@6 MAE@6 MAPE@6 RMSE@12 MAE@12 MAPE@12

METR-LA LLM-TS Net 29.74% 33.59% 37.86% 7.44% 6.35% 17.71% 12.10% 10.47% 7.81%
W/Unc-LLM-TS Net 26.95% 32.44% 33.63% 5.29% 3.34% 16.46% 10.71% 6.40% 8.63%

PEMS-BAY LLM-TS Net 47.58% 42.97% 49.25% 38.29% 30.82% 43.38% 36.57% 22.58% 38.67%
W/Unc-LLM-TS Net 45.35% 41.41% 44.74% 37.47% 28.93% 40.85% 36.11% 17.20% 33.64%

Table 4: The table presents the comparative performance improvements of LLM-TS Net and W/Unc-LLM-TS Net in terms
of percentage increase across several metrics on the METR-LA and PEMS-BAY datasets. These improvements are measured
against the next-best baseline models.

Model PeMSD3 PeMSD4 PeMSD7 PeMSD8 PeMSD7(M)
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

LLM-TS Net 11.98 17.8 9.44 15.78 22.7 8.87 17.78 27.07 7.67 12.79 18.87 6.79 2.16 4.27 5.22
W/Unc-LLM-TS Net 11.89 17.58 9.62 15.99 24.04 8.73 17.91 28.35 8.93 13.22 20.46 7.09 2.21 4.33 5.5

w/o LLMs 14.11 21.22 11.2 18.58 26.62 10.63 21.09 32.35 9.03 14.95 22.42 7.9 2.57 5.09 6.18
w/o DP 14.21 21.42 11.18 18.65 26.87 10.62 21.35 31.9 9.0 14.98 22.83 7.99 2.60 5.12 6.16

w/o IntraS 13.67 19.73 10.79 17.5 25.69 10.09 19.81 30.27 8.63 14.45 21.56 7.66 2.45 4.71 5.84
w/o w/o InterS 13.5 20.21 10.77 17.71 25.83 9.79 19.59 31.03 8.62 14.11 20.96 7.71 2.42 4.75 5.89

w/o CMA 15.53 22.81 12.01 19.82 28.57 11.39 22.42 35.0 9.95 16.23 23.62 8.58 2.74 5.34 6.66

Table 5: The table presents the results of the ablation study on the MTSF task using benchmark datasets. The performance of
the ablated variants drops compared to the original framework (LLM-TS Net, W/Unc-LLM-TS Net).
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where Ttrain denotes the time points in the training set. The
negative Gaussian log-likelihood is a measure that evaluates
how likely the observed data are, given the estimated mean
and variance of the Gaussian distribution. A lower value of
this measure indicates a more accurate fit of the Gaussian
distribution to the observed data, suggesting a more precise
representation of the underlying trends. In the w/Unc-LLM-
TS Net framework, a Gaussian likelihood function is used
to model future values. Within this model, the mean and
variance of the Gaussian distribution are computed by the
neural network, where the mean represents the predicted fu-
ture values and the variance reflects the uncertainty asso-
ciated with these predictions. By minimizing the negative
log-likelihood of the Gaussian distribution, the framework
effectively identifies the set of model parameters that best
capture the data’s characteristics and concurrently provide
estimates of prediction uncertainty. To put it succinctly, the
LLM-TS Net framework minimizes the MAE ( Mean Ab-
solute Error) to identify the optimal set of model parameters
for the best fit to the data. In contrast, the w/Unc-LLM-TS
Net framework (which is LLM-TS Net with local uncer-
tainty estimation) focuses on minimizing the GaussianNL-
LLoss (negative log-likelihood of a Gaussian distribution)
to quantitatively assess uncertainty.

BASELINES
In evaluating the effectiveness of the new neural forecasting
models, specifically the LLM-TS Net and w/Unc-LLM-
TS Net, for multivariate time series forecasting (MTSF),
it is standard practice to compare them against well-known
benchmark algorithms. These benchmarks are selected for
their prevalent usage in scientific studies and their proven
track record on standard benchmark datasets.

• HA (Hamilton 2020), predicts the next value in a time
series by calculating the average of observations within a
predefined historical window.

• ARIMA is a statistical analysis model, designed to han-
dle time series data that is non-stationary. Nonetheless,
it has certain limitations. For instance, ARIMA struggles
with processing long-term trends and seasonal patterns
that evolve over time.

• VAR((Hamilton 2020)) expands upon the univariate au-
toregressive (AR) model. It is specifically crafted to un-
derstand and analyze the relationships between multiple
time series variables for effectively analyzing and pre-
dicting the behavior of complex systems.

• TCN( (Bai, Kolter, and Koltun 2018)) architecture is
designed for multistep-ahead predictions in time series
data. This architecture uses a combination of causal con-
volutions and dilation layers. Causal convolutions enable
the TCN to integrate past data effectively, which is cru-
cial for time series analysis. Meanwhile, dilation layers

expand the receptive field of the convolutional filters ex-
ponentially. This expansion allows the TCN to capture
long-range correlations within the MTS data, enhancing
its predictive accuracy and effectiveness.

• FC-LSTM( (Sutskever, Vinyals, and Le 2014)) employs
an encoder-decoder architecture that utilizes LSTM
(Long Short-Term Memory) units equipped with peep-
hole connections. This framework has proven to be
highly effective in multi-horizon forecasting tasks. It ex-
cels in identifying both complex and nonlinear interde-
pendencies among multiple time series variables within
MTS data. Notably, it adeptly captures both short-term
and long-term relationships among these variables.

• GRU-ED( (Cho et al. 2014)) is an encoder-decoder archi-
tecture that utilizes GRU (Gated Recurrent Unit) units.
This framework is particularly efficient for sequential
data processing, especially in multistep-ahead time se-
ries prediction. It achieves this by effectively capturing
and utilizing information from previous time steps.

• DSANet( (Huang et al. 2019)) is designed for forecasting
in correlated time series. It employs Convolutional Neu-
ral Networks (CNNs) to effectively identify and leverage
long-range dependencies within individual time series.
Unlike traditional models, DSANet does not depend on
recurrent structures to understand temporal relationships
in MTS data. Additionally, it incorporates self-attention
mechanisms, which are adept at dynamically recognizing
inter-dependencies among different time series. This fea-
ture is particularly useful for making accurate predictions
several steps ahead in MTS data.

• DCRNN( (Li et al. 2018b)), is a sophisticated method
that combines the concepts of bidirectional random
walks on graphs with the integration of graph convolu-
tion and recurrent neural networks. This innovative com-
bination is specifically designed to effectively capture
both spatial and temporal dependencies in MTS data.
A key feature of DCRNN is its encoder-decoder archi-
tecture, which is adept at making multistep-ahead fore-
casts in MTS data. This architecture significantly en-
hances forecast accuracy compared to traditional fore-
casting methods.

• STGCN( (Yu, Yin, and Zhu 2018)) effectively integrates
graph convolution with gated temporal convolution. This
combination allows the model to efficiently capture the
spatial-temporal relationships among multiple time se-
ries variables. It is particularly adept at making multi-
step-ahead predictions in MTS data.

• GraphWaveNet( (Wu et al. 2019)), innovatively com-
bines a wave-based propagation mechanism with graph
representations through dilated causal convolution lay-
ers. This design enables the model to learn an adaptive
dependency matrix, which is key for capturing spatial-
temporal dependencies in time series data. By integrat-
ing these elements, GraphWaveNet excels at making
multistep-ahead forecasts, effectively understanding the
interdependencies among various time series variables.
This leads to enhanced forecasting accuracy.



• ASTGCN( (Guo et al. 2019)), employs an attention-
based spatio-temporal graph convolutional network. This
design is specifically tailored to discern both inter- and
intra-dependencies within time series data, enabling the
model to predict future outcomes multiple steps ahead.
A key feature of ASTGCN is its ability to efficiently
map out spatial and temporal relationships among var-
ious time series variables, leveraging attention mecha-
nisms to enhance its predictive accuracy.

• STG2Seq( (Bai et al. 2019)) is designed for multistep-
ahead forecasting in MTS data. It employs a dual ap-
proach, combining Gated Graph Convolutional Networks
(GGCNs) with a sequence-to-sequence (seq2seq) archi-
tecture, which is enhanced by attention mechanisms.
This structure allows STG2Seq to effectively capture two
key aspects: dynamic temporal correlations, which are
the changing relationships over time within each time
series variable, and cross-channel information, which
refers to the correlations among multiple variables. By
integrating these elements, the model can comprehen-
sively understand and predict the complex interrelations
between multiple time series variables.

• STSGCN( (Song et al. 2020)) is designed to make multi-
step ahead predictions in MTS data. This is achieved
by layering several spatial-temporal graph convolutional
layers. These networks are adept at identifying and in-
terpreting both intra- and inter-dependencies within the
graph-structured MTS data. By doing so, STSGCN effec-
tively models the intricate relationships that exist among
the various time series variables.

• LSGCN( (Huang et al. 2020)) enhances multi-step-ahead
forecasting in MTS data. It achieves this by incorporat-
ing a graph attention mechanism within a spatial gated
block. This innovative approach effectively identifies and
leverages dynamic dependencies between various time-
series variables. It does so through attention mechanisms,
which significantly boost the accuracy of its forecasts.

• AGCRN( (Bai et al. 2020)) predicts multistep-ahead
forecasts in MTS data by employing a method that learns
the structure of the graph data adaptively. It is partic-
ularly effective in identifying and modeling the com-
plex dependencies and relationships that exist in spatial-
temporal data, thanks to its ability to discern both intra-
and inter-correlations specific in the time series data. This
approach allows for a more nuanced understanding of the
interactions between various time series variables, result-
ing in better forecast accuracy.

• STFGNN( (Li and Zhu 2021)) is designed for multistep-
ahead forecasting in MTS data. It enhances prediction ac-
curacy by integrating two distinct components: a tempo-
ral graph module and a gated convolution module. These
modules function concurrently over various time peri-
ods. The temporal graph module focuses on capturing the
dynamic relationships across different time steps, while
the gated convolution module specializes in understand-
ing spatial relationships. Together, they effectively learn
and model the complex interdependencies among multi-
ple time series variables.

• Z-GCNETs( (Chen, Segovia-Dominguez, and Gel 2021))
predicts multistep-ahead forecasts in MTS data. This ap-
proach uniquely combines a time-aware zigzag topolog-
ical layer with time-conditioned Graph Convolutional
Networks (GCNs). The key innovation here is the ability
to uncover hidden spatial-temporal dependencies and ac-
quire significant time-conditioned topological informa-
tion. This dual focus allows it to effectively represent the
intricate interrelations among various time series vari-
ables, taking into account their topological characteris-
tics.

• STGODE( (Fang et al. 2021)) is designed for multistep-
ahead forecasting. It employs a tensor-based ordinary
differential equation (ODE) to effectively grasp the com-
plex interdependencies among multiple time series vari-
ables within MTS data. This methodology facilitates the
creation of deeper network architectures. By doing so, it
comprehensively captures the intricate spatial-temporal
dynamics present in the data, leading to a notable en-
hancement in the accuracy of the forecasts.

EXPERIMENTAL SETUP
The traffic-related benchmark datasets were categorized into
three distinct, non-overlapping, and exclusive subsets with
different ratios: a training set for model learning, a valida-
tion set for fine-tuning hyperparameters, and a test set for
evaluating the model’s performance on new, unseen data.
Specifically, the PEMS-BAY and METR-LA datasets were
divided using a 70%/10%/20% split for training, validation,
and testing, respectively. In contrast, the remaining datasets
followed a 60%/20%/20% division for these three sets. Prior
to training the forecasting models, all time-series variables
were standardized to have a mean of zero and a variance
of one. The models were evaluated using several accuracy
metrics, including Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Mean Absolute Percentage Er-
ror (MAPE). These metrics were calculated using the orig-
inal scale of the time-series data, both during model train-
ing and evaluation. The hyperparameters of the dynamic
prompting mechanism, involve three main parameters: win-
dow size (W=12), prompt pool size (M=15), and embedding
dimension (d=64). The window Size is crucial for determin-
ing the length of the historical data segment in the sliding
window technique, impacting its ability to discern spatio-
temporal patterns. The prompt pool size affects the diversity
of prompts available, influencing the model’s adaptability to
various data patterns. Lastly, embedding dimensions deter-
mine the complexity and expressiveness of the prompt and
time series embeddings. The hyperparameters for Grouped-
query Multi-head Attention (GQ-MHA) include critical fac-
tors such as the number of groups (G=3), which affects
the distribution of attention across data segments. The di-
mensionality of key/value/query projections(d), which influ-
ences the transformation of input data, and the number of
attention heads (H=4), which dictates the focus on different
input aspects. The scaling factor(dk=16), typically a fraction
of the key/value dimension, stabilizes the attention mecha-
nism. Balancing these parameters is crucial for achieving an



optimal trade-off between the model’s accuracy in captur-
ing spatio-temporal dynamics and computational efficiency.
The LLM-TS Net framework was trained for 30 epochs
with a batch size(b) of 48, an iterative process that refined
its parameters by minimizing forecast error. Early stopping
based on Validation MAE was implemented to prevent over-
fitting, ensuring the selection of the best-performing model
for effective generalization to unseen data. This strategy en-
hanced the framework’s overall performance. The frame-
work’s generalization capabilities were assessed on a test set
to evaluate its performance with new data. To improve train-
ing efficiency and accelerate model convergence, a learn-
ing rate scheduler was implemented. This scheduler dynam-
ically adjusted the learning rate based on the validation set’s
performance, reducing it by 50% if there was no improve-
ment for 5 consecutive epochs. This adaptive learning rate
strategy optimized the training process and achieved bet-
ter generalization performance. Additionally, the Adam op-
timizer(Kingma and Ba 2014) was employed, a widely used
optimization algorithm known for its efficiency and robust-
ness in handling large-scale datasets. This optimizer effec-
tively fine-tuned the model’s learnable parameters, ensuring
smooth and stable convergence. The initial learning rate was
set to 1 × 10−3, a carefully chosen value that minimized
the MAE loss for the LLM-TS Net model and the nega-
tive Gaussian log-likelihood for the w/Unc-LLM-TS Net
model. This optimization strategy resulted in model pre-
dictions that closely aligned with the actual ground truth.
The models were trained on powerful GPUs, including the
NVIDIA Tesla V100 to accelerate the training process and
facilitate the use of larger models and datasets built upon
the PyTorch framework. Multiple independent experimen-
tal runs were performed, and the ensemble average was re-
ported to provide a reliable evaluation of the models’ perfor-
mance.
Fine-Tuning Llama2-7B model: The hyperparameters
for parameter-efficient fine-tuning based on the LoRA-AMR
technique include: (1) Rank (r = 16): The rank in the
low-rank approximation. It controls the trade-off between
model capacity and complexity. A higher rank leads to a
more expressive model, but also increases the number of
parameters. (2) Alpha ((α)): A scaling factor in the LoRA
technique, typically set to a fraction like 1

r . Alpha con-
trols the magnitude of the updates applied to the model pa-
rameters. A larger alpha leads to more aggressive updates,
which can improve performance but may also lead to in-
stability. (3) LoRA dropout: A dropout rate applied to the
low-rank adapters during training. Dropout helps to prevent
overfitting and improve generalization. A typical value for
LoRA dropout is 0.05. The training configuration comprises
a batch size of 16 per GPU for efficient resource utilization,
15 epochs to ensure adequate training and convergence, an
initial learning rate of 2e-4 for controlled optimization, a
weight decay of 0.001 to prevent overfitting, the AdamW
optimizer for adaptive learning rate adjustments, and 4-bit
quantization via QLoRA-AMR to facilitate efficient fine-
tuning on consumer hardware while maintaining compara-
ble performance. We employed a supervised fine-tuning ap-
proach to train the smaller Llama2-7B model. This approach

utilized the LoRA-AMR technique and 4-bit Quantization
Bit-Width. The training process involved feeding the model
pairs of time series data and their corresponding textual de-
scriptions. The goal was to minimize the cross-entropy loss.
We utilized Nvidia V100s (32GB RAM) for fine-tuning the
Llama2-7B model using the PyTorch deep-learning library.

Performance Analysis on Multistep Forecasting at
each Horizon
The proposed LLM-TS Net neural forecasting framework
was evaluated to assess its ability to generate accurate fore-
casts that extend multiple steps ahead, using a variety of
benchmark datasets. Its performance was measured using
metrics like Root Mean Square Error (RMSE), Mean Ab-
solute Percentage Error (MAPE), and Mean Absolute Er-
ror (MAE), indicating that lower scores denote better per-
formance. Figure 5 shows the prediction errors for LLM-
TS Net multistep-ahead forecasts for various time horizons,
compared to other forecasting models, including STGODE,
STGNCDE, ZCNETS, and AGCRN, demonstrating their
forecasting accuracy for these benchmark datasets. The re-
sults demonstrate that LLM-TS Net consistently outper-
forms the baseline models across all prediction ranges. This
finding suggests that LLM-TS Net is highly capable of rec-
ognizing and utilizing nonlinear spatio-temporal patterns in
MTS data. As the prediction horizon increases, there is a no-
table rise in forecasting error, as evidenced by the increasing
forecasting error values for various models evaluated on the
benchmark datasets. This trend highlights the inherent chal-
lenge of maintaining accuracy in longer-term predictions.

Irregular Time Series Forecasting
Large, complex interconnected sensor networks encompass
a diverse range of real-world applications but are plagued by
inherent drawbacks of low data quality stemming from in-
evitable and widespread intermittent sensor failures, faulty
sensors, and other factors that arise during the data acqui-
sition process. To assess the effectiveness of the LLM-TS
Net framework in dealing with missing data, we simulate
data availability and missingness using two different types of
missingness patterns (Roth and Liebig 2022; Cini, Marisca,
and Alippi 2021) and evaluate the performance of the pro-
posed framework on the missing data for the MTSF task.
The simulation techniques mimic missingness patterns that
occur in continuous time with asynchronous spatio-temporal
patterns commonly encountered in real-world data from
large, complex sensor networks. Firstly, the MCAR (Miss-
ing Completely At Random) patern simulates sensor failure
by randomly dropping observations of each variable within
a given historical window, with missing ratios ranging from
10% to 50%. In this point-missing pattern, the missingness
is unrelated to the observed values or any other variables.
This means that the missing data is essentially random and
does not provide any information about the underlying pro-
cess. Secondly, a block-missing pattern refers to a specific
arrangement of missing data points in a time series, where
consecutive data points are missing for a contiguous period
or block. Block-missing patterns are characterized by their



length, which represents the number of consecutive miss-
ing data points, and their frequency, which indicates how
often these patterns occur within the time series. In block-
missing patterns with the MCAR (Missing Completely At
Random) category, the occurrence of missing blocks is un-
related to the observed values or any other variables. This
means that the missingness is essentially random and does
not provide any information about the underlying process.
We simulate sensor failure by randomly masking out avail-
able data within a given historical window, with missing-
ness ratios ranging from 10% to 50% by selecting appropri-
ate block lengths and frequencies. Our meticulously crafted
deep learning-based framework, LLM-TS Net, for time se-
ries representation learning incorporates dynamic prompt-
ing mechanism, spatial and temporal inference components
to effectively process and analyze MTS data, characterized
by intricate dependencies and relationships between vari-
ables that evolve over time. We delve further into the in-
tricacies of the LLM-TS Net framework, investigating the
impact of its individual components on multi-horizon fore-
casting accuracy in the presence of irregular missing data.
To further assess the significance of each component within
the LLM-TS Net framework, we conduct a meticulous ab-
lation study on the benchmark model. By selectively re-
moving either the dynamic prompting mechanism, spatial
learning component, or temporal learning component, we
evaluate the individual contributions of these components
to forecasting accuracy under missing data scenarios. These
in-depth investigations underscore the robustness and reli-
ability of the LLM-TS Net framework, demonstrating its
effectiveness in real-world applications where missing data
is a prevalent challenge. To rigorously evaluate the perfor-
mance of the LLM-TS Net framework, we employ multiple
benchmark datasets and meticulously split them into train-
ing, validation, and test sets according to a chronological or-
der. For the METR-LA and PEMS-BAY datasets, we adopt
a 7:1:2 ratio, while for the remaining datasets, a 6:2:2 ra-
tio is utilized. We then assess the model’s effectiveness on
simulated data by evaluating its performance against estab-
lished forecasting error metrics. This comprehensive eval-
uation process sheds light on the model’s ability to handle
missingness and irregular intervals in MTS data, providing
valuable insights into its resilience across varying levels of
missing data. As a benchmark for the MTSF task, we select
the LLM-TS Net framework trained on fully observed data
(i.e., 0% missingness), establishing a baseline for compari-
son. The performance of the proposed models was assessed
by measuring forecast errors for a recognized benchmarking
task that involves using historical data from 12 time steps to
predict estimates 12 time steps into the future. In Tables 6
and 7, we report the average error in this scenario, which
is typically calculated by comparing the predicted values
(forecasts) for each of the 12 future time steps with the ac-
tual observed values at those time steps. This contrasts with
the results presented in Table 2, where the model utilizes
12 historical data points to forecast the value at the 12th
future time step for computing the forecasting errors. Ta-
bles 6 and 7 summarize the irregular-time-series forecast-
ing performance on the benchmark datasets. While the pro-

posed model exhibits a slight decline in accuracy compared
to the benchmark model for lower percentages of missing
data, its performance degrades more rapidly as the propor-
tion of incomplete data increases, leading to consistently
lower forecast accuracy across all datasets, regardless of the
specific pattern of missing data. This resilience to missing
data stems from the model’s ability to condition pointwise
forecasts on the available observations, circumventing the
need to rely on imputed values and enabling a more ac-
curate capture of the underlying dependencies and patterns
in the MTS data. Additionally, the model effectively cap-
tures the nonlinear spatial-temporal dynamic dependencies
within the networks of interconnected sensors, generating
more reliable out-of-sample forecasts. Furthermore, the re-
sults demonstrate that in various missing data scenarios, the
ablation model with only the spatial inference component
outperforms the one with only the temporal inference com-
ponent. However, LLM-TS Net, which incorporates both the
temporal and spatial learning components, still surpasses all
the ablated models. This suggests that the joint optimiza-
tion of temporal and spatial inference components is crucial
for achieving optimal performance in missing data scenar-
ios. The experimental findings indicate that our framework
can effectively learn the spatial-temporal dependencies from
partial data across various missingness patterns, leading to
reduced forecast error.



Missing Scheme Missing Rate
PeMSD3 PeMSD4 PeMSD7 METR-LA

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE
LLM-TS Net 0% 21.03 13.64 11.30 27.04 18.02 10.31 30.05 19.52 8.08 7.53 4.56 9.47

Point
10% 21.83 13.50 11.97 26.97 18.11 12.01 31.24 21.79 8.55 7.92 4.87 8.63
30% 21.99 13.48 12.83 31.07 20.05 11.95 30.66 22.05 9.09 8.47 5.46 9.64
50% 22.08 15.46 12.67 32.10 20.65 13.70 32.41 21.91 10.35 8.77 5.82 9.29

Point (Only Spatial)
10% 21.41 13.30 11.69 29.91 19.23 12.06 29.71 21.26 8.66 8.49 4.66 8.56
30% 22.30 14.57 12.61 30.78 20.58 13.26 33.26 22.57 9.94 8.51 5.26 9.43
50% 23.22 16.13 13.94 30.82 21.97 13.45 34.64 22.47 10.02 9.03 5.74 9.61

Point (Only Temporal)
10% 31.24 21.79 16.74 36.79 27.64 16.41 42.47 31.61 13.10 8.61 5.06 8.71
30% 37.32 27.90 21.51 46.00 31.86 18.94 51.52 37.63 17.14 9.42 6.39 9.82
50% 43.79 29.92 22.92 52.44 39.65 20.37 59.82 44.38 18.49 10.73 6.93 10.49

Block
10% 19.87 13.70 11.82 28.27 18.39 11.52 29.84 20.65 8.39 8.40 4.52 8.86
30% 21.14 13.96 12.65 29.59 20.34 12.43 30.85 22.33 8.78 8.73 5.05 9.57
50% 23.01 14.72 13.88 33.18 20.88 13.81 33.04 23.21 10.21 9.47 5.56 9.39

Block (Only Spatial)
10% 21.30 14.35 12.13 28.06 18.98 11.78 29.20 20.20 8.84 8.07 5.12 8.64
30% 21.59 14.12 12.84 32.97 22.85 13.09 32.40 22.29 9.19 8.77 5.44 9.52
50% 22.42 15.51 12.70 30.82 21.97 13.45 34.64 22.47 10.02 9.10 5.58 10.02

Block (Only Temporal)
10% 30.16 21.58 17.16 38.46 27.53 15.29 44.08 32.03 13.59 8.82 5.22 9.38
30% 38.01 26.54 20.49 44.34 34.78 20.35 52.89 37.95 16.44 9.43 5.95 9.99
50% 47.01 34.03 24.21 50.98 40.37 22.34 62.31 46.46 20.33 11.01 6.78 10.50

Table 6: Pointwise forecasting error on irregular PeMSD3, PeMSD4, PeMSD7, and METR-LA

Missing Scheme Missing Rate PeMSD7(M) PeMSD8 PEMS-BAY
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

LLM-TS Net 0% 4.97 2.71 5.57 21.49 13.85 7.80 2.81 1.50 2.73

Point
10% 5.16 2.97 6.85 22.61 15.91 8.67 2.82 1.60 3.20
30% 5.60 3.63 7.63 24.67 16.96 9.48 3.04 1.77 3.45
50% 5.93 3.69 7.90 26.96 17.50 9.90 3.16 2.01 3.44

Point (Spatial Only)
10% 5.26 3.32 6.71 22.56 15.43 9.42 3.00 1.75 3.21
30% 5.63 3.56 7.53 23.66 16.25 9.16 3.01 1.80 3.23
50% 5.93 3.88 7.89 25.09 17.34 10.32 3.12 1.91 3.31

Point (Temporal Only)
10% 5.77 3.40 7.11 32.19 22.43 13.54 3.41 1.87 3.36
30% 6.38 3.95 8.29 38.69 28.19 16.67 3.69 2.11 3.73
50% 6.85 4.39 9.15 44.42 32.80 18.54 3.94 2.29 3.97

Block
10% 5.20 3.15 6.88 23.03 15.59 9.13 2.98 1.68 3.10
30% 5.53 3.49 7.65 24.16 16.48 9.80 3.11 1.79 3.31
50% 5.82 3.76 8.18 26.12 17.96 10.70 3.25 1.92 3.50

Block (Spatial Only)
10% 5.18 3.17 6.94 23.42 15.94 9.51 2.99 1.71 3.15
30% 5.54 3.52 7.74 24.77 17.00 10.07 3.12 1.81 3.33
50% 5.87 3.83 8.37 26.21 18.10 10.86 3.27 1.93 3.52

Block (Temporal Only)
10% 5.77 3.39 7.04 31.95 22.18 13.32 3.40 1.86 3.34
30% 6.36 3.95 8.21 38.57 28.11 16.63 3.69 2.10 3.72
50% 6.90 4.42 9.08 44.82 33.10 18.50 4.00 2.35 4.02

Table 7: Pointwise forecasting error on irregular PeMSD7(M), PeMSD8 and PEMS-BAY



(a) Predictions for forecast horizon@3 (b) Predictions for forecast horizon@6

(c) Predictions for forecast horizon@12

Figure 3: The figure shows the comparative performance of different forecasting models on the METR-LA dataset. It showcases
the accuracy and precision of each model in predicting traffic flow trends, emphasizing their respective strengths and limitations.



(a) Predictions for forecast horizon@3 (b) Predictions for forecast horizon@6

(c) Predictions for forecast horizon@12

Figure 4: The figure illustrates the performance comparison of various models on the PEMS-BAY dataset. It highlights the
forecast accuracy and error margins for each model, providing insights into their relative effectiveness in predicting traffic flow
patterns.
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(d) MAE on PeMSD4
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Figure 5: The table shows the pointwise prediction error for
multi-horizon forecasting tasks on benchmark datasets.


