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Abstract

We use a data-driven approach to model a three-dimensional
turbulent flow using cutting-edge Deep Learning techniques.
The deep learning framework incorporates physical con-
straints on the flow, such as preserving incompressibility
and global statistical invariants of velocity gradient tensor.
The accuracy of the model is assessed using statistical and
physics-based metrics. The data set comes from Direct Nu-
merical Simulation of an incompressible, statistically station-
ary, isotropic turbulent flow in a cubic box. Since the size
of the dataset is memory intensive, we first generate a low-
dimensional representation of the velocity data, and then pass
it to a sequence prediction network that learns the spatial
and temporal correlations of the underlying data. The dimen-
sionality reduction is performed via extraction using Vector-
Quantized Autoencoder (VQ-AE), which learns the discrete
latent variables. For the sequence forecasting, the idea of
Transformer architecture from natural language processing is
used, and its performance compared against more standard
Recurrent Networks (such as Convolutional LSTM). These
architectures are designed and trained to perform a sequence
to sequence multi-class classification task in which they take
an input sequence with a fixed length (k) and predict a se-
quence with a fixed length (p), representing the future time
instants of the flow. Our results for the short-term predictions
show that the accuracy of results for both models deterio-
rates across predicted snapshots due to autoregressive nature
of the predictions. Based on our diagnostics tests, the trained
Conv-Transformer model outperforms the Conv-LSTM one
and can accurately, both quantitatively and qualitatively, re-
tain the large scales and capture well the inertial scales of
flow but fails at recovering the small and intermittent fluid
motions.

Introduction
Turbulence is a complex dynamical system which is strongly
high-dimensional, multi-scale, non-linear, non-local and
chaotic with a broad range of correlated scales that vary over
space and time. Such features make high-fidelity spatio-
temporal simulation of turbulence extremely challenging
and often impossible (particularly for large domains, un-
steady flows, complex boundary conditions) due to limita-
tions of computational power and numerical schemes. From
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Computational Fluid Dynamics (CFD) perspective, turbu-
lent flows can be simulated by solving Navier-Stokes (NS)
equations in three flavors of Direct Numerical Simulation
(DNS), Large Eddy Simulation (LES) and Reynolds Aver-
aged Navier-Stokes Simulation (RANS) depending on the
application and expected accuracy. In DNS, full-scale res-
olution is achieved by solving NS on a domain with ex-
tremely fine spatial and temporal grids so that all the scales
down to the dissipation range are resolved. The LES is based
on low-pass spatial filtering of NS equations in which the
small scales of turbulent flow are modeled and large un-
steady motions, corresponding to the most energetic scales,
are resolved. The main goal of modeling in LES is to build
a more accurate and universal closure model for the residual
(sub-grid) stress tensor. RANS models are derived by tak-
ing a temporal average of NS equations, resulting in sim-
pler steady equations, and assuming a linear relationship
between Reynolds stresses and mean strain rate. In RANS
modeling, the focus is on constructing the Reynolds-stress
tensor closure.

The aforementioned CFD techniques are purely physics
based where NS equations are solved using different dif-
ferentiation and integration schemes. However, the high-
fidelity simulations using DNS and LES are computation-
ally prohibitive and are limited to simplified turbulent flows
to gain detailed insight into the physics of turbulence. Fur-
thermore, RANS cannot simulate important characteristics
of turbulence such as unsteadiness and intermittency due
to its time averaging nature. Therefore, a major pursuit and
fundamental task of turbulence community is to develop new
modeling techniques to characterize dynamics of turbulence
that evolve over time and space while varying over a broad
range of spatio-temporal scales.

Recently with growing the availability of high-fidelity
data and computational power data-driven modeling has
gained huge interest and been introduced as a competitive
alternative to conventional numerical simulations. Among
these data-driven methods, Machine Learning (ML) tech-
niques, particularly Deep Learning (DL) models, have re-
ceived more attention due to their ability to capture complex
interactions and achieve outstanding performance across
a wide range of applications in information technology,
healthcare and engineering to name a few.

In this research our main objective is to bring fresh



perspective to the classic problem of turbulence model-
ing by exploring and utilizing modern deep learning tech-
niques to develop accurate and efficient turbulence models.
More specifically, the primary goal is to develop a data-
driven modeling framework to simulate high-fidelity three-
dimensional turbulent flow realizations that respect turbu-
lence characteristics without solving the full NS equations.

Background
In fluid dynamics community, particularly computational
fluid dynamics of turbulent flows, there have been some
attempts in recent years to utilize deep learning tools into
turbulence modeling and generate predictive models. These
endeavors have been mainly centered around developing
Reynolds stress closures and subgrid-scale (SGS) models
for RANS and LES simulations respectively (Maulik et al.
2019; Ling, Kurzawski, and Templeton 2016; Beck, Flad,
and Munz 2019), super-resolution reconstruction (enhanc-
ing the resolution) of coarse flow fields (Fukami, Fuka-
gata, and Taira 2018), turbulence data compression (Glaws,
King, and Sprague 2020), and augmenting existing turbu-
lence models with physics-informed machine learning (Wu,
Xiao, and Paterson 2018; Wang and Raj 2017).

The first step of modeling dynamics of turbulence is to
identify potential deep learning models which are well-
suited for handling non-linear spatial and sequential data. In-
deed, we seek models that can capture spatial and temporal
dependencies of turbulent flow field. Given the grid/pixel-
based discretizations of our computational domain, we can
draw an analogy between turbulence data and image data
where three components of velocity field represent RGB
(red, green, blue) color channels and instead of two di-
mensional spatial grids we have three-dimensional ones.
Therefore, we can benefit from modern computer vision ap-
proaches in our modeling framework, particularly Convolu-
tional Neural Networks (CNN) (Khan et al. 2018).

The capability of CNNs in extracting spatial distribution
of data (exploiting the correlations between the adjacent in-
put data points) could make them a suitable architecture
for a variety of physics-based applications. In the past few
years there have been multiple studies that utilized CNNs
in the context of spatio-temporal modeling of turbulence
(Wang et al. 2020; Li et al. 2020) and found promising re-
sults. However, these works have been limited to 2D turbu-
lent flows which are far less complicated than 3D turbulence
both in terms of physics and computational tractability. The
only relevant works aligned with our objective are the recent
studies of (Mohan et al. 2019, 2020; Mohan, Livescu, and
Chertkov 2020) that their findings, though encouraging but
seem suspicious.

In (Mohan et al. 2020), the dynamic mapping of
ScalarHIT dataset, containing three components of veloc-
ity field of isotropic turbulence and two passive scalar ad-
vected with the flow, was modelled via a integration of Con-
volutional Autoencoder neural network (CAE) and convolu-
tional LSTM, so called Compressed Convolutional LSTM
(CCLSTM). In this architecture, flow snapshots are first
transformed to a low-dimensional latent-space, using a pre-
trained CAE, serving as input sequence of the sequence

learning model. This LSTM model is trained to predict an
output sequence representing the future snapshots of flow
in the latent space and then this output sequence is trans-
formed to original dimension of flow field. This CC-LSTM
model is autoregressive (cycling prediction), meaning that
previous predictions are fed as the input for the next pre-
dictions to generate future temporal realizations. Their CAE
has a compression ratio of 125 and the temporal spacing be-
tween sampled snapshots, or sampling rate, was ω = 0.09 τ ,
where τ represents eddy turnover time.

The static reconstruction results show that their CAE
model has retained large and inertial scales but fails dras-
tically at capturing small scales, as demonstrated in the tails
of the PDF of velocity gradient and large wave numbers in
energy spectra (Figure 10 in (Mohan et al. 2020)). For the
dynamic mapping, they predicted several time instants over
range τ = [3.4.5]. Their (dynamic) results (Figure 16 in
(Mohan et al. 2020)) show that their model performs even
better than the static reconstructions and can fully capture
large and inertial scales of flow and generate stable flow re-
alizations over this 1.5 τ prediction horizon. These results
are really suspicious as we observe that the tails of PDF
of velocity gradient, which their compression model failed
to retain, are almost perfectly recovered and remained sta-
ble during dynamic prediction. The authors conjectured that
their model adds some artifacts to the predicted snapshots
that result in mimicking these intermittent regions of the
PDFs. More importantly, their claim (and results) that the
error of their temporal predictions remains marginal with
increasing prediction horizon is in clear contrast with the
findings reported in the recent spatio-temporal modeling of
two-dimensional turbulence(Wang et al. 2020).

The same authors in a recent work (Mohan, Livescu, and
Chertkov 2020), proposed another spatio-temporal model,
called Wavelet-CLSTM, in which the compression is per-
formed via wavelet transformation as opposed to CAE.
Their results again indicate that such a model can emulate
temporal evolution of flow field such that statistics of large
and intermediate scales are retained stable with increasing
prediction horizon. While it was clear that their model has
large discrepancies in recovering the PDF of velocity gra-
dient, they reported that these PDFs solely test the smallest
scales of flow and so such deviations are expected since the
loss of information (during wavelet transform) happens at
small scales. However, from turbulence literature we know
that PDFs of velocity gradient tensor also provide rich multi-
scale information and they do not only represent small scales
of flow.

Method
In this research, we leverage existing high-fidelity DNS data
to emulate spatio-temporal evolution of three-dimensional
turbulence with a less memory and computation costs com-
pared to existing flow solvers. More importantly, we make
this framework physics-informed through embedding a cali-
bration inside model by infusing as much as our prior knowl-
edge of data and turbulence as possible into training process.
Hierarchical superposition of complex structures in deep
convolutional layers resemble cascade nature of turbulence



and hence it is worth exploring whether the techniques uti-
lized in computer vision tasks could be applicable to turbu-
lent flow field. Therefore, the convolutional layers would be
the core part of the deep learning architecture of this study.
We probe and validate this framework by employing high-
fidelity DNS data from three-dimensional statistically sta-
tionary isotropic turbulence.

The high-fidelity DNS data come from solving the NS
equations on a fine-grid three-dimensional mesh. In this
study, we start with our smallest dataset which represents a
fully resolved statistically stationary isotropic turbulent flow
with Rλ = 90 simulated on a cubic domain with 128 grid
point in each direction. At each of these grid points, we have
three components of velocity field (u, v, w) and nine com-
ponents of velocity gradient tensor defined as Aij = ∇u =
∂ui/∂xj , in which ui is a component of the fluid velocity,
and xi is a spatial coordinate.

Since the size of the dataset is memory intensive, similar
to the conceptual design of (Mohan et al. 2019), we first gen-
erate a low-dimensional representation of the velocity data
and then pass it to a sequence prediction network that learns
the positional and temporal correlations of the underlying
data. Therefore, our framework will be composed of two
separate models where one serves as a compression engine
and the other performs prediction. In the deployment phase,
once both engines are trained and we want to test the per-
formance of our framework, a sequence of input data is first
compressed via the down-sampling part of the compression
network, then the prediction network takes this collection
of reduced representations and outputs a sequence of future
time steps in the latent space and finally this sequence is
mapped to original size representation via the upsampling
part of the compression engine.

Vector-Quantized Autoencoder (VQ-AE) The dimen-
sionality reduction is performed via extraction using a vari-
ant of autoencoder (AE) network, called Vector-Quantized
Autoencoder (VQ-AE) architecture (Momenifar et al. 2021;
Van Den Oord, Vinyals et al. 2017; Razavi, van den Oord,
and Vinyals 2019), which encodes the input data in a dis-
crete latent space and can effectively use the capacity of
latent space by conserving important features of data that
usually span many dimensions in data space (such as ob-
jects in images) and reducing entropy (putting less focus
on noise) (Van Den Oord, Vinyals et al. 2017). Mathemat-
ically speaking, in a vector quantization (VQ) operation, m-
dimensional vectors in Rm are mapped into a finite set of
codewords/vectors Y = {ei : i = 1, 2, ..,K} with a fixed
size D or ei ∈ RD, where K represents the size of the code-
book. Compared to a conventional autoencoder, a Vector-
Quantized Autoencoder has an additional Vector-Quantizer
module. The encoder (E) serves as a non-linear function that
maps input data (x) to a vector E(x). The quantizer modules
takes this vector and outputs an index (k) corresponding to
the closest codeword in the codebook to this vector (ek):

Quantize(E(x)) = ek, k = argmin
j

∥ E(x)− ej ∥2 . (1)

Codeword index k is used for the integer representation
of the latent space, and ek serves as the input of decoder

(D) which operates as another non-linear function to recon-
struct the input data. The Vector-Quantizer module brings
two additional terms in the loss function, namely codebook
loss and commitment loss, to align the encoder output with
the vector space of the codebook. The entire VQ-AE loss is
defined as:

L(x,D(e)) = ∥ x−D(e) ∥22︸ ︷︷ ︸
reconstruction loss

+

∥ sg{E(x)} − e ∥22︸ ︷︷ ︸
codebook loss

+β ∥ sg{e} − E(x) ∥22︸ ︷︷ ︸
commitment loss

. (2)

As noted earlier, preserving small-scale properties of the
turbulent flow was a challenge for prior compression mod-
els. Here we add appropriate constraints in order to capture
these more faithfully. More details on the properties of these
physics-based constraints can be found in (Momenifar et al.
2021). By adding these constraints as regularization terms
to the VQ-AE loss function gives the overall loss function
(OL) given below

Overall Loss (OL) = VQ-AE loss
+α× VGC + γ × OC (3)

Velocity Gradient Constraint (VGC) = MSE(Aij , Âij)︸ ︷︷ ︸
i=j

+

a×MSE(Aij , Âij)︸ ︷︷ ︸
i ̸=j

(4)

Other Constraints (OC) = MAE(⟨SijSij⟩, ̂⟨SijSij⟩)+

MAE(⟨RijRij⟩, ̂⟨RijRij⟩)+

MAE(⟨SikSkjSij⟩, ̂⟨SikSkjSij⟩)+

MAE(⟨Sijωiωj⟩, ̂⟨Sijωiωj⟩),
(5)

Convolutional LSTM Vanilla RNN is known to suffer
from gradient vanishing and explosion problems, and it fails
to capture long term dependencies among sequential data.
Therefore, Long-Short Term Memory (LSTM) is later pro-
posed by (Hochreiter and Schmidhuber 1997) as a solution
to these drawbacks by introducing memory state and multi-
ple gating mechanism. As formulated below, LSTM has an
internal memory cell ct to store the long term information.
It also requires four gates to control the information flow
from input, hidden state and the memory cell. The input gate
it determines how much information of input and hidden
state should be remembered by the memory cell. The forget
gate ft determines how much long term memory should be
saved for the next time step. gt contains the information of
current input and previous hidden state and the output gate
ot controls the information flows into the next hidden state.
Depending on the switching of gates, LSTM can represent



long-term and short-term dependencies of sequential data si-
multaneously.

it = σ(Wxixt + bxi +Whiht−1 + bhi) (6)
ft = σ(Wxfxt + bxf +Whfht−1 + bhf ) (7)
gt = tanh(Wxgxt + bxg +Whght−1 + bhg) (8)
ot = σ(Wxoxt + bxo +Whoht−1 + bho) (9)
ct = ft ∗ ct−1 + it ∗ gt (10)
ht = ot ∗ tanh(ct) (11)

Apart from LSTM mentioned above, there still exist many
other variations of RNN. Many of them are designed to spe-
cialize on specific type of sequential data (Cho et al. 2014;
Jozefowicz, Zaremba, and Sutskever 2015; Tai, Socher, and
Manning 2015; Greff et al. 2016; Kent and Salem 2019;
Diao, Ding, and Tarokh 2019). Because we focus on three-
dimensional turbulence data, we use Convolutional LSTM
(Conv-LSTM)(Xingjian et al. 2015) to model the depen-
dence between the spatial and temporal information. Conv-
LSTM replace linear transformation in vanilla LSTM with
Convolutional Neural Networks (CNN) and its general for-
mulation remains the same.

Convolutional Transformer Transformer (Vaswani
et al. 2017) architecture has been introduced with the pur-
pose of offering parallel computation (by avoiding recur-
sion that consequently reduces training time) and reducing
performance drop due to long-term dependency issues. The
transformer model introduces the self-attention unit, which
accounts for similarity scores between elements of a se-
quence, and positional embeddings, a unit that replaces the
recurrence. These innovative units can capture sequential re-
lationship between different items of a sequence and conse-
quently allow the Transformer network to process input se-
quences as a whole rather than element by element, which
is typical in recurrent neural networks. This characteristic,
processing all the items in an input sequence simultaneously,
enables the Transformer model not to rely on previous hid-
den states for preserving correlations with previous elements
in sequence (no backpropagation through time), hence elim-
inates the risk of forgetting past information with increasing
sequence length.

We formulate the transformer block below. Input x is
transformed into query, key, and value with three separate
weight matrix Wq , Wk, and Wv respectively. We calculate
self-attention α by taking the dot product of the query with
the key with a scaling factor 1√

dk
where dk is the size of hid-

den representations. The self-attention is used to attend the
value with a linear transformation parameterized by weight
matrix Wu. We use a feed-forward block parameterized by
weight matrix W1 and W2 to further model the attended out-
put. We standardize temporal information with LayerNorm
(Ba, Kiros, and Hinton 2016) function. The residual connec-

tion is also used to avoid the issue of gradient vanishing.

Q (x) = Wq ∗ x,K (x) = Wk ∗ x, V (x) = Wv ∗ x (12)

α = softmax

(
⟨Q (x) ,K (x)⟩√

dk

)
(13)

u′ = Wu ∗ αV (x) (14)

u = LayerNorm (x+ u′) (15)

z′ = W2 ∗ ReLU (W1 ∗ u) (16)

z = LayerNorm (u+ z′) (17)

This block can be stacked multiple times for better perfor-
mance. Similar to Conv-LSTM, we replace linear transfor-
mation in vanilla Transformer with convolution ∗ and its
general formulation remains the same.

Computational Details
As mentioned earlier, our framework consists of two deep
learning models, one for compression and the other for se-
quence learning, which are trained separately. Our compres-
sion model is a VQ-AE, proposed in our recent work ( (Mo-
menifar et al. 2021)). We design our VQ-AE network so that
it can downsample original data by a scaling factor of SF =
2. With K = 512 representing the size of the codebook
and mapping three velocity components into one in the dis-
crete latent space, we can achieve 3×32

1×9 × (SF )3 reduction
in bits, corresponding to 85. Indeed, an input data of shape
(3, 128, 128, 128) is compressed to (1, 64, 64, 64). One can
find more details regarding hyper-parameters, model archi-
tecture and training in (Momenifar et al. 2021).

For the sequence learning model, we designed and
trained two radically different sequence learning mod-
els, convolutional LSTM (Conv-LSTM) and convolu-
tional Transformer (Conv-Transformer). These architec-
tures are designed and trained to take an input sequence
with length k and predict a sequence with length p,
representing the next p realizations of the system (se-
quence to sequence multi-class classification). Mathemat-
ically, it means mapping [Xt−k, ..., Xt−2b, Xt−b, Xt] to
[Xt+b, Xt+2b, ..., Xt+p], where b is the sampling interval
(time span between observations), X ∈ RH×W×D×C in
which C is the number of channels in the data (correspond-
ing with the number of velocity components), H , W and
D represent the height, width and depth of data. Here the
architectures used in this study are briefly summarized.

For the both sequence learning models, the input sequence
of velocity field is first transformed to a low-dimensional
discrete latent space, via the pre-trained encoder of the VQ-
AE model, and then passes through an embedding layer to
transform data to continuous space (indeed, each integer is
represented with a codeword which is a vector in real space).
For the Convolutional LSTM model, this continuous latent
space sequence is fed to a LSTM block consisting of three
LSTM cells/layers. Afterwards the output of LSTM block
passes through a series of linear layers to expand the channel
dimension from codeword size to the codebook one. Then
we need to find, for each grid point in three-dimensional do-
main, the class (index) with the highest probability in this



(a) Conv-LSTM, 𝑡 + 𝑏 (b) Conv-LSTM, 𝑡 + 2𝑏 (c) Conv-LSTM, 𝑡 + 3𝑏

(d) Conv-Transformer, 𝑡 + 𝑏 (e) Conv-Transformer, 𝑡 + 2𝑏 (f) Conv-Transformer, 𝑡 + 3𝑏

Figure 1: Predictions of velocity field using (a-c) Conv-LSTM and (d-f) Conv-Transformer models.

(a) Conv-LSTM (b) Conv-Transformer

Figure 2: Predictions of turbulent kinetic energy (TKE) us-
ing (a-c) Conv-LSTM and (d-f) Conv-Transformer models.

multi-class classification task. This step is performed by re-
turning the index of the largest element in the channel di-
mension and then we apply the cross-entropy loss to com-
pute the discrepancy between the true and predicted output
sequence. Finally, the predicted output sequence is trans-
formed to the original dimension of velocity field through
the pre-trained decoder of the VQ-AE model. The same
pipeline was used for the Transformer model, where we de-
signed its architecture following the instructions in (Vaswani
et al. 2017) and adjusted the network for image data (the
Transformer model was originally proposed for text data).

In our dataset we have 80 snapshots equally spaced in
time, from t = 3 TL − 7 TL, where Tl denotes large eddy
turn over time. Indeed, these snapshots cover a time span of
4Tl corresponding to a sampling interval of b = 0.05 TL.

We use the first 40 snapshots as training set and the rest
as test set. We trained our framework for 300 epochs with
batch size = 1 using the Adam optimizer (Kingma and Ba
2014) with learning rate = 0.001, along with a learning rate
scheduler. It should be noted that our focus has been on the
general characteristics of the framework rather than achiev-
ing the best configurations, hence there might be room for
improvements by tuning the proposed hyper-parameters.

We implemented this framework in PyTorch using the
CUDA environment, and trained it on one NVIDIA Pas-
cal P100 GPU. The performance of the predicted velocity
field is assessed not only via the conventional error measure-
ment methods such as MSE and mean absolute error (MAE)
but also using rigorous physics-based metrics relevant to the
analysis of turbulence such as the probability density func-
tions (PDFs) of the filtered velocity gradient tensor and its
invariants, the turbulent kinetic energy spectra and the joint
PDF of Q−R plane (detailed in (Momenifar et al. 2021)).

Experiments
Our VQ-AE model offers a compression ratio of 85 and re-
covers all the flow characteristics up to second order statis-
tics of the velocity gradient tensor, with small discrepan-
cies at the smallest scales. We also found that the embed-
ding physics constraints in the loss function can noticeably
improve the quality of the reconstructed small scales of the
flow. Interested readers can found details on our data com-
pression engine in (Momenifar et al. 2021).



(a) Conv-LSTM, No Filter

(d) Conv-Transformer, No Filter (e) Conv-Transformer, Inertial Scales (f) Conv-Transformer, Large Scales

(b) Conv-LSTM, Inertial Scales (c) Conv-LSTM, Large Scales

Figure 3: Predictions PDFs of velocity gradient tensor using (a-c) Conv-LSTM and (d-f) Conv-Transformer models on small
(a,d), inertial (b,e), and large (d,f) scales.

Table 1: Simulation parameters for the DNS study of
isotropic turbulence (arbitrary units). N is the number of
grid points in each direction, Reλ ≡ u′λ/ν is the Tay-
lor micro-scale Reynolds number, λ is the Taylor micro-
scale, L is the box size, ν is the fluid kinematic viscos-
ity, ϵ is the mean turbulent kinetic energy dissipation rate,
l is the integral length scale, η ≡ ν3/4/ϵ1/4 is the Kol-
mogorov length scale, u′ ≡

√
(2k/3) is the fluid r.m.s.

fluctuating velocity, k is the turbulent kinetic energy, uη is
the Kolmogorov velocity scale, TL ≡ l/u′ is the large-eddy
turnover time, τη ≡

√
(ν/ϵ) is the Kolmogorov time scale,

κmax =
√
2N/3 is the maximum resolved wavenumber.

Parameter N Reλ L ν ϵ l l/η u′ u′/uη TL TL/τη κmaxη

Value 128 93 2π 0.005 0.324 1.48 59.6 0.984 4.91 1.51 12.14 1.5

As mentioned earlier, our sequence learning models have
been trained to take an input sequence with a fixed length
(k) and predict a sequence with a fixed length (p), represent-
ing the future time instants of the flow. The spacing between
the flow snapshots or sampling interval (b), is arbitrary but
is constrained with the input sequence. Therefore, feeding
an input sequence where all the flow realizations are 0.05TL

apart would result in an output sequence with a similar sam-
pling interval b = 0.05TL. In our experiments, we trained
our models with sequences where ω = 0.05TL and therefore
they are well-suited to predict temporal realizations that are
0.05TL apart. Furthermore, we can also roll out autoregres-
sively (also known as cyclic prediction) and feed predicted
sequence as input sequence to the model and generate flow
realizations over a larger prediction horizon.

Given the size of the compressed data in discrete latent
space, (1, 64, 64, 64), and our available GPU memory, we
were able to train sequence learning models with k = p =
3b. It is worth mentioning that one can train models with
much larger k, p with a more compressed data , correspond-
ing to a larger SF . However, this would come at the cost
of losing prediction accuracy as the information content of

compressed data with SF = 4 is less richer that SF = 2.
In what follows, we present our results during inference for
short-term prediction, where the sampling interval in the test
data is the same as the training data (b = 0.05TL).

During short-term predictions the models receive input
sequence of [Xt−2b, Xt−b, Xt] and generate sequence of
[X̂t+b, X̂t+2b, X̂t+3b], where X̂ represents prediction of X .
It is worth pointing out that we obtained robust results over
all test data and the following results are for the test case
where t = 6.8TL. In all of the diagnostics tests, we ob-
serve that the accuracy of results deteriorates from the first
to the third predicted snapshots. This is quite expected as
the error propagates from the first predictions to the next
ones due to autoregressive nature of the predictions. In-
deed, during the inference we obtain X̂t+b, X̂t+2b, and
X̂t+3b based on [Xt−2b, Xt−b, Xt], [Xt−b, Xt, X̂t+b], and
[Xt, X̂t+b, X̂t+2b], respectively.

In Figure 1, we evaluate the performance of our Conv-
LSTM and Conv-Transformer models in reconstructing 2d
snapshots (randomly sampled) of the velocity field, as well
as the PDFs of the velocity components (where the statis-
tics are based on the full 3d domain) across the predicted
snapshots. The results show that for the first prediction
time step both models capture reasonably well, Conv-LSTM
is slightly better than Conv-Transformer, the instantaneous
spatial structure of the flow and the statistical properties of
the velocity field. Although the accuracy of reconstructed
snapshots decreases for the next predictions due to the error
propagation, we clearly observe that the quality of predicted
snapshots using Conv-Transformer is much better.

The turbulent kinetic energy (TKE) spectra of the pre-
dicted time instants are shown in Figure 2 for the Conv-
LSTM and Conv-Transformer models. While the recon-
struction quality decreases for the Conv-LSTM model from
the first to the third predictions, our Conv-Transformer
model accurately captures the large and inertial scales of
flow, both quantitatively and qualitatively, with significant
loss of information for the smallest scales.



(a) Conv-LSTM, No Filter

(d) Conv-Transformer, No Filter (e) Conv-Transformer, Inertial Scales (f) Conv-Transformer, Large Scales

(b) Conv-LSTM, Inertial Scales (c) Conv-LSTM, Large Scales

Figure 4: Predictions of R-Q using (a-c) Conv-LSTM and (d-f) Conv-Transformer models on small (a,d), inertial (b,e), and
large (d,f) scales.

The PDFs of the longitudinal and transverse components
of the velocity gradient tensor for different filtering lengths
are shown in Figure 3 across different predictions of the
Conv-LSTM and Conv-Transformer models. The results il-
lustrate that our models across all the predicted time instants
can accurately capture the body of these PDFs, but fail at
retaining heavy tails and skewness. Our results show that
the Conv-Transformer model has a better performance than
Conv-LSTM one. Furthermore, we observe that the quality
of the results improves as we move from inertial to large
scales, indicating that loss of information mainly occurred
at small scales.

The capability of our models in reconstructing the joint-
PDF of the Q and R invariants of velocity gradient tensor
across different predictions and flow scales are shown in
Figure 4 for the Conv-LSTM and Conv-Transformer mod-
els. Our models struggle to capture the behavior of the Q,R
PDFs and can only capture some of the most frequent char-
acteristics of the flow (interior contours of the PDF). Such
large discrepancies in recovering these joint PDFs may seem
surprising given that our models were able to accurately cap-
ture the body of the PDFs of velocity gradient tensor. How-
ever, the invariants Q,R depend not only upon the proper-
ties of the individual velocity gradient components, but also
upon more subtle features such as the geometric alignments
between the strain-rate and vorticity fields which our models
fail to capture from the data.

In summary, we can conclude that the Conv-Transformer
model outperforms the Conv-LSTM model and can better
retain statistics of flow field across the entire prediction hori-
zon. The outperformance of Transformer model can be heav-
ily attributed to its ability to process input sequences as a
whole rather than element by element which is typical in

LSTM model. Such a characteristic enables Transformer to
capture more faithfully the temporal correlations between
sequence elements.

we also tried to test our models, which have been trained
for short-term prediction, on challenging tasks of varying
sampling interval and long-term predictions. Not shown
here, but our results indicate that the quality of reconstructed
flow fields across all the predicted snapshots deceases for the
varying sampling interval inference. Furthermore, we ob-
served that during cyclic prediction (to generate long-term
predictions), error (from one prediction to the next one)
propagates significantly and accumulation of such errors re-
peatedly result in flow snapshots that do not retain important
characteristics of turbulence.

Conclusions
In this study, we aim at exploring the feasibility of emulating
temporal and spatial patterns of three-dimensional isotropic
turbulence, purely from data, via modern deep learning ap-
proaches. Since our data size is memory intensive, we first
generate a low-dimensional representation of the velocity
data and then pass it to a sequence prediction network that
learns the spatio-temporal correlations of the underlying
data. Our results show that the accuracy of results for both
models deteriorates across predicted snapshots due to au-
toregressive nature of the predictions. One potential idea to
improve the paper is by including explicit multi-resolution
structure in the latent code generation (Jia et al. 2019).

Based on our diagnostics tests, the Conv-Transformer
model outperforms the Conv-LSTM one and can accurately,
both quantitatively and qualitatively, retain the large scales,
capture well the inertial scales of flow but fail at recover-
ing the small and intermittent fluid motions. The outperfor-



mance of Conv-Transformer model can be heavily attributed
to its ability to process input sequences as a whole rather
than element by element (which is typical in LSTM model).
However, both models neglect important characteristics of
the joint-PDF of the Q and R invariants of velocity gradient
tensor indicating that our models struggle to capture more
subtle features of velocity field such as the geometric align-
ments between the strain-rate and vorticity fields.
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